PROPERTIES OF PURE SUBSTANCES:INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

A substance whose specific volume (or density) is constant is called an in- compressible substance. The specific volumes of solids and liquids essentially remain constant during a process (Fig. 3–74). Therefore, liquids and solids can be approximated as incompressible substances without sacrificing much in accuracy. The constant-volume assumption should be taken to imply that the energy associated with the volume change is negligible compared with other forms of energy. Otherwise, this assumption would be ridiculous for studying the thermal stresses in solids (caused by volume change with temperature) or analyzing liquid-in-glass thermometers.

It can be mathematically shown that the constant-volume and constant- pressure specific heats are identical for incompressible substances (Fig. 3–75). Therefore, for solids and liquids, the subscripts on Cp and Cu can be dropped, and both specific heats can be represented by a single symbol C. That is,

PROPERTIES OF PURE SUBSTANCES-0185PROPERTIES OF PURE SUBSTANCES-0186

This result could also be deduced from the physical definitions of constant- volume and constant-pressure specific heats. Specific heat values for several common liquids and solids are given in Table A–3.

Internal Energy Changes

Like those of ideal gases, the specific heats of incompressible substances depend on temperature only. Thus, the partial differentials in the defining equation of Cu can be replaced by ordinary differentials, which yield

PROPERTIES OF PURE SUBSTANCES-0187

Enthalpy Changes

Using the definition of enthalpy h = u + Pu and noting that u = constant, the differential form of the enthalpy change of incompressible substances can be

PROPERTIES OF PURE SUBSTANCES-0188

For solids, the term u LlP is insignificant and thus Llh = Llu Cav LlT. For

liquids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters

2. Constant-temperature processes, as in pumps

For a process between states 1 and 2, the last relation can be expressed as h2 – h1 = u(P2 – P1). By taking state 2 to be the compressed liquid state at a given T and P and state 1 to be the saturated liquid state at the same temperature, the enthalpy of the compressed liquid can be expressed as

PROPERTIES OF PURE SUBSTANCES-0189

PROPERTIES OF PURE SUBSTANCES-0190

Related posts:

Pumps:Pump suction performance (NPSH)
Compressed Air Transmission and Treatment:STERILE AIR AND GAS FILTERS
Energy and Efficiency:Theory of two level systems
Air flow rate evaluation:The influence of temperature and Conveyed material influences.
AIR RESERVOIR (RECEIVER):AIR RESERVOIR (RECEIVER)
Low pressure and vacuum:Hopper off-loading and Trickle valves
Pressure and flow:Pascal's law.
Design procedures:Logic diagram for system design
Pipeline scaling parameters:Pipeline bore and Empty line pressure drop
Material property influences:Dense phase sliding bed flow
ROUBLESHOOTING PNEUMA TIC CIRCUITS:Rotary Screw Compressors
HYDRAULIC FLUIDS:Lubricating Power
Hydraulic motors:Continuous rotation hydraulic motors
POWER AND REFRIGER A TION CYCLES:THE REVERSED CARNOT CYCLE
GAS MIXTURES AND PSYCHROMETRICS:ADIABATIC SATURATION AND WET-BULB TEMPERATURES

Leave a comment

Your email address will not be published. Required fields are marked *