Air only relationships:Venturi analysis and High pressure applications.

Venturi analysis

Particular advantages of using venturi feeders for positive pressure conveying lines are that minimum headroom is required, there are no moving parts and, if the device is correctly designed, there need be no air leakage from the feeder, as there is with nearly all other types of feeder. A venturi basically consists of a controlled reduction in pipeline cross section in the region where the material is fed from the supply hopper, as shown in Figure 10.12.

A consequence of this reduction in flow area is an increase in the entraining air velocity, and a corresponding decrease in pressure, in this region. With a correctly designed venturi the pressure at the throat should be just a little lower, or about the same, as that in the supply hopper which, for the majority of applications, is atmospheric pressure. This then encourages the material to flow readily under gravity into the pipeline, and under these conditions there will be no leakage of air from the feeder in opposition to the material feed.

Air only relationships-0174

For low pressure applications, in order to keep the throat at atmospheric pressure, and also of a practical size such that it will allow the passage of material to be conveyed, a relatively low limit has to be imposed on the air supply pressure. These feeders, therefore, are usually incorporated into systems that are required to convey free-flowing materials at low flow rates over relatively short distances.

Since only low pressures can be used with the basic type of venturi operating at atmospheric pressure, a positive displacement blower or a standard industrial fan is all that is needed to provide the air. To fully understand the limitations of this type of feeder, the thermodynamic relationships are presented below. The two parameters of interest in venturi feeders are the velocity at the throat and the area, or diameter, of the throat. From the steady flow energy equation, equating between the inlet (i) and the throat (t) gives:

Air only relationships-0175

Air only relationships-0176

Atmospheric pressure applications

Although venturis capable of feeding materials into conveying pipelines with operating pressure drops of 0.4 bar are commercially available, the additional pressure drop across the venturi can be of the same order. This means that the air supply pressure will have to be at about 0.8 bar gauge and consequently, for this type of duty, it would be recommended that the air should be supplied by a positive displacement blower.

High pressure applications

It was mentioned in Chapters 3 and 4, dealing with feeding devices for pneumatic con- veying systems that with the use of lock hoppers (see Section 4.5) venturis could also be used in high pressure systems. Although the above analysis was used to illustrate the atmospheric pressure application, the same models can be used to analyse high pressure applications simply with an alternative value of the pressure at the throat, pt.

Related posts:

Case studies:Variable speed drives on golf course irrigation pumps
Control principles for variable speed pumping:Speed variation for positive displacement pumps
Motors:Alternative electrical designs of motors
Pumps:Positive displacement pumps
Air only relationships:Pipeline pressure drop and Flow parameters and properties.
Compressed Air Transmission and Treatment:STERILE AIR AND GAS FILTERS
High pressure:Twin blow tank systems
Review of pneumatic conveying systems:Staged systems and Dual vacuum and positive pressure systems.
Fine material:Dense phase conveying of cement
CHARACTERISTICS OF COMPRESSED AIR:RELATIVE HUMIDITY.
Hydraulic pumps:Pump classification.
Hydraulic pumps:Principle of operation.
BASICCONCEPTS OF THE RMODYNAMICS:PROPERTIES OF A SYSTEM
BASICCONCEPTS OF THE RMODYNAMICS:FORMS OF ENERGY
ENERGY TRANSFER BY HEAT,WORK,AND MASS:MECHANICAL FORMS OF WORK

Leave a comment

Your email address will not be published. Required fields are marked *