SUMMARY OF ENTROPY

SUMMARY

The second law of thermodynamics leads to the definition of a new property called entropy, which is a quantitative measure of microscopic disorder for a system. The definition of entropy is based on the Clausius inequality, given by

ENTROPY-0284where the equality holds for internally or totally reversible processes and the inequality for irreversible processes. Any quantity whose cyclic integral is zero is a property, and entropy is defined as

ENTROPY-0285

where Sgen is the entropy generated during the process. Entropy change is caused by heat transfer, mass flow, and irreversibilities. Heat transfer to a system increases the entropy, and heat transfer from a system decreases it. The effect of irreversibili- ties is always to increase the entropy.

Entropy is a property, and it can be expressed in terms of more familiar properties through the T ds relations, expressed as

ENTROPY-0286

These two relations have many uses in thermodynamics and serve as the starting point in developing entropy-change relations for processes. The successful use of T ds relations de- pends on the availability of property relations. Such relations do not exist for a general pure substance but are available for incompressible substances (solids, liquids) and ideal gases.

The entropy-change and isentropic relations for a process can be summarized as follows:

ENTROPY-0289

ENTROPY-0290

The work done during a steady-flow process is proportional to the specific volume. Therefore, u should be kept as small as possible during a compression process to minimize the work input and as large as possible during an expansion process to maximize the work output.

The reversible work inputs to a compressor compressing an ideal gas from T1, P1 to P2 in an isentropic (Puk = constant), polytropic (Pun = constant), or isothermal (Pu = constant) manner, are determined by integration for each case with the following results:

ENTROPY-0291

The work input to a compressor can be reduced by using multistage compression with intercooling. For maximum savings from the work input, the pressure ratio across each stage of the compressor must be the same.

ENTROPY-0292

Related posts:

Concepts for estimating pumping energy costs:Systems with static head
Applications on pneumatic:Compressed air in marine applications.
Applications on pneumatic:Contractors tools
Compressed Air Transmission and Treatment:Commissioning and safety
Pipelines and valves:Wall thickness
ACTUATORS:Piston- Type Cylinders
Introduction to pneumatic conveying and the guide:Nomenclature
Review of pneumatic conveying systems:System types,Open systems and Positive pressure systems.
Hydraulic fluids
Types of control valve:Poppet valves,Spool valves and Rotary valves.
Safety, Fault-Finding and Maintenance:cleanliness
Safety, Fault-Finding and Maintenance:computer simulation
THE SECOND LA W OF THERMODYNAMICS:REVERSIBLE AND IRREVERSIBLE PROCESSES
SUMMARY OF POWER AND REFRIGER A TION CYCLES
INTRODUCTION TO FLUID MECHANICS:CLASSIFICATION OF FLUID FLOWS

Leave a comment

Your email address will not be published. Required fields are marked *