Microphone Technology:Microphone Selection

Microphone Selection

Microphones are usually selected on the basis of mechanism, sensitivity, nature of response, polar response pattern, and handling characteristics. Mechanism refers to the physical nature of the transducing element of the microphone. Sensitivity in current practice refers to the voltage sensitivity, SV . The nature of response refers to whether the microphone output is proportional to acoustic pressure, acoustic pressure gradient, or acoustic particle velocity. Polar response patterns summarize a microphone’s directional characteristics. Handling characteristics are a result of whether the structure of the microphone housing is mechanically isolated from the transducing structure of the microphone. The following is a list of popular microphones according to the transducing mechanism:

1. Carbon.

2. Capacitor.

3. Moving coil.

4. Ribbon.

5. Piezoelectric.

(a) Carbon

Carbon microphones made their advent as transmitters in early telephones. Pressure variations on a metallic diaphragm actuated a metallic button contact to either increase or decrease the compaction of carbon granules contained in a brass cup so as to decrease or increase the resistance of the assembly. The impinging sound thus modulated the direct current in a circuit containing a battery and the microphone element. Carbon microphones are quite sensitive and inexpensive to construct. In addition to the normal thermal noise, such microphones suffer from fluctuations in contact resistance between carbon granules even in the absence of acoustic excitation. The high noise floor and restricted frequency response limit the application of such microphones in sound reinforcement systems.

(b) Capacitor

Capacitor microphones exist in two basic forms. In one form a capacitor has a front plate formed by a flexible low-mass, metallic, or metal film diaphragm separated by an air gap from an insulated, rigid metallic perforated back plate. Air motion through the

perforations in the back plate serves to damp the mechanical resonance of the diaphragm. This resonance occurs at a high frequency as a result of a stiff, low mass diaphragm. The diaphragm is operated at ground potential while the back plate is charged through a very high resistance by a DC voltage source ranging up to 200 V.

In a second form, a permanently polarized dielectric or electret is positioned on the surface of the back plate removing the necessity for an external polarizing voltage source. In both instances the capacitor circuit is completed through a resistance of the order of

109 Ω and the charge on the capacitor remains approximately constant. Pressure variations on the flexible diaphragm produce changes in the air gap dimension, thus raising or lowering the capacitance by a small amount depending on the degree of diaphragm displacement. With a constant charge on the variable capacitor, the voltage variations track the diaphragm displacement variations.

The capacitor circuitry itself is of high impedance and requires that a field effect transistor (FET) source follower be contained within the microphone housing. The source follower may be energized by a local battery in the case of the electret form or may derive its power from the polarizing voltage source in the pure air capacitor form. These microphones, although not the most rugged, can be of extremely high quality with regard to frequency response. As discussed later, the construction details of the microphone capsule may be varied to make the microphone capsule sensitive to either acoustic pressure or acoustic pressure gradient.

(c) Moving Coil

The moving coil microphone and the ribbon microphone are collectively referred to as being dynamic microphones. Much discussion has been given previously with regard to some of the features of the moving coil microphone. The mechanical resonance of the moving coil structure is usually made to occur at the geometric mean of the low frequency and high frequency limits describing the microphone’s pass band. In a typical case this resonance occurs at about 630 Hz. In the pressure responsive version of such a microphone the back chamber to the rear of the diaphragm contains an acoustic resistance that highly damps the diaphragm mechanical resonance. This damping greatly broadens the resonance, forcing the response to be uniform except at the frequency extremes.

Oftentimes a small resonant tube tuned to a low frequency and vented to the outside is incorporated in the rear cavity. In addition to extending the response at low frequencies, this tube allows the static air pressure in the rear chamber to track slow changes in atmospheric pressure. Even in microphone structures featuring an otherwise sealed rear cavity, a slow leak must always be provided for static pressure equalization. A small air chamber that is resonant at a high frequency may also be located in the rear cavity in order to enhance the response at high frequencies. Moving coil microphone structures are usually quite rugged.

(d) Ribbon

The ribbon microphone employs a conductor in a magnetic field, as does a moving coil microphone. Unlike the moving coil, which is located in a radially directed magnetic field, the conductor in a ribbon microphone is a narrow, corrugated metal ribbon located in a linearly directed magnetic field that is perpendicular to the length of the ribbon. The ribbon itself constitutes the diaphragm, both faces of which are exposed to external sound fields.

The driving force on the ribbon is directly proportional to the pressure difference acting on the two faces of the ribbon and hence is proportional to the space rate of change of acoustic pressure. The space rate of change of pressure is called the pressure gradient. The ribbon responds to the acoustic particle velocity with maximum response occurring when the incident sound is normal to a face of the ribbon. This microphone is inherently directional with a figure eight polar pattern. Although featuring excellent performance over a wide frequency range, the structure is inherently fragile and is not suitable for exterior use under windy conditions.

(e) Piezoelectric

Piezoelectric microphones depend on a structural property possessed by certain dielectric crystals and especially prepared ceramics. The nature of this property is that if the crystal or ceramic is subjected to a mechanical stress, its shape will be distorted. When this occurs, an electric field appears in the substance as a result of shifted ion positions within the structure. A capacitor can be formed employing such a dielectric that will generate a voltage that is proportional to the mechanical stress. The mechanical stress can be made to result from the motion of a diaphragm exposed to acoustic pressure. In this fashion it is possible to construct a relatively simple, inexpensive pressure-sensitive microphone. Piezoelectric microphones have very high capacitive output impedances. In the past the high voltage sensitivity of such microphones made them popular for recorders and simple public address applications where quite short connecting cables were possible. They are still employed in some sound level meters but other professional application is quite restricted.

(f) Matching Talker to Microphone

Distant or bashful talkers require microphones of higher voltage sensitivity in order to produce voltage levels matching those required by microphone input amplifiers.

Nearby and professional talkers require microphones of less sensitivity in order to match amplifier input requirements without the use of pads in the input circuitry. Rock singers are an extreme case requiring the least input sensitivity and further requiring both breath blast and pop filters particularly when pressure gradient microphones are employed. Table 22.1 lists representative voltage sensitivity ranges typical of microphones classified according to the mechanism.

Microphone Technology-0477

Leave a comment

Your email address will not be published. Required fields are marked *