Impact of Large Penetration of Correlated Wind Generation on Power System Reliability:Correlated Time-Varying Elements

Correlated Time-Varying Elements

Power systems are composed by components whose states may be accurately represented by independent random variables (transmission lines, transformers, generators, etc.) and also by time-varying elements (wind, loads, river inflows, etc.) that are represented by time series. These time-varying elements can be statistically correlated and therefore the consideration of statistical independence becomes invalid. The correlation between variables can be both spatial and temporal, and in general these two effects are observed. This feature is not a problem for sequential MCS, where the time series are explicitly represented. However, in nonsequential MCS, it can become a challenge for obtaining indices with an acceptable level of accuracy. Therefore, an appropriate approach is required for a correct representation of the correlation between them in nonsequential MCS.

When a single time-varying element is represented, as in the case of the aggregated system load curve [10] or one wind generation [11], nonsequential MCS can be directly applied because this single variable is statistically indepen- dent from the others and therefore Eq. (3) remains valid. However, when two or more time-varying elements are represented, the assumption of statistical inde- pendence cannot always be accepted. This problem is well known in the representation of different load curves in multi-area systems [12]. This question gains a new dimension nowadays with the strong incorporation of wind generation that is being observed all over the world. For a correct representation, it is necessary to consider that there may be correlation between wind time series of the different wind farm sites or even between these wind series and the load curves.

Consider, at first, two different time-varying elements which could be two wind time series, for example, and assume that random variable x1 represents the state of the first element and x2 represents the state of the second. Equation (3) can be rewritten by separating the terms related to the two variables as (4):

Large Scale Renewable Power Generation-0245

And therefore, the probability of the ith state of the system can be written as (8):

Large Scale Renewable Power Generation-0246

In [8, 9], a model has been proposed for considering the correlation between any numbers of time series in nonsequential MCS. The model is based on explicitly obtaining the conditional probability distribution functions by a recursive algorithm. However, the computational efficiency of the model depends on the number of dependent variables and therefore its applicability is affected when several wind generations are present in the system. This chapter presents a more flexible model to overcome this constraint and also maintain the computational efficiency.

Related posts:

The Efficient Use of Energy:Energy Usage.
The direct current (DC) motor.
Low-Voltage Switchgear and Circuit Breakers:Selection and Application of Low-Voltage Equipment
Transformers:Single-Phase Transformers
Mechanical fuel systems:Early common-rail
AN INTRODUCTION TO ELECTRICITY GENERATION:EVOLUTION OF ELECTRICITY NETWORKS
FUEL CELLS:HISTORY OF FUEL CELLS
TIDAL BARRAGE POWER PLANTS:TWO-BASIN PROJECTS
GEOTHERMAL POWER:GEOTHERMAL POWER AND DISTRICT HEATING AND FINDING AND EXPLOITING GEOTHERMAL SOURCES
Thermal Stress of 10-MW Wind Power Converter Under Normal Operation:Stress of Converter Imposed by W...
NUCLEAR POWER:FUNDAMENTALS OF NUCLEAR POWER
General Overview:Nuclear Energy
Introduction to The Current Situation and Perspectives on the Use of Hydropower for Electricity Gene...
Introduction to The Current Situation and Perspectives on the Use of Wind Energy for Electricity Gen...
A Review of Interconnection Rules for Large-Scale Renewable Power Generation:Necessity of Grid Conne...

Leave a comment

Your email address will not be published. Required fields are marked *