DATA MOVEMENT INSTRUCTIONS:PUSH/POP

PUSH/POP

The PUSH and POP instructions are important instructions that store and retrieve data from the LIFO (last-in, first-out) stack memory. The microprocessor has six forms of the PUSH and POP instructions: register, memory, immediate, segment register, flags, and all registers. The PUSH and POP immediate and the PUSHA and POPA (all registers) forms are not avail- able in the earlier 8086/8088 microprocessors, but are available to the 80286 through the Core2.

Register addressing allows the contents of any 16-bit register to be transferred to or from the stack. In the 80386 and above, the 32-bit extended registers and flags (EFLAGS) can also be pushed or popped from the stack. Memory-addressing PUSH and POP instructions store the contents of a 16-bit memory location (or 32 bits in the 80386 and above) on the stack or stack data into a memory location. Immediate addressing allows immediate data to be pushed onto the stack, but not popped off the stack. Segment register addressing allows the contents of any segment register to be pushed onto the stack or removed from the stack (ES may be pushed, but data from the stack may never be popped into ES). The flags may be pushed or popped from that stack, and the contents of all the registers may be pushed or popped.

PUSH

The 8086–80286 PUSH instruction always transfers 2 bytes of data to the stack; the 80386 and above transfer 2 or 4 bytes, depending on the register or size of the memory location. The source of the data may be any internal 16- or 32-bit register, immediate data, any seg- ment register, or any 2 bytes of memory data. There is also a PUSHA instruction that copies the contents of the internal register set, except the segment registers, to the stack. The PUSHA (push all) instruction copies the registers to the stack in the following order: AX, CX, DX, BX, SP, BP, SI, and DI. The value for SP that is pushed onto the stack is whatever it was before the PUSHA instruction executed. The PUSHF (push flags) instruction copies the contents of the flag register to the stack. The PUSHAD and POPAD instructions push and pop the contents of the 32-bit register set found in the 80386 through the Pentium 4. The PUSHA and POPA instructions do not function in the 64-bit mode of operation for the Pentium 4.

Whenever data are pushed onto the stack, the first (most-significant) data byte moves to the stack segment memory location addressed by SP – 1. The second (least-significant) data byte moves into the stack segment memory location addressed by SP – 2. After the data are stored by a PUSH, the contents of the SP register decrement by 2. The same is true for a doubleword push, except that 4 bytes are moved to the stack memory (most-significant byte first), after which the stack pointer decrements by 4. Figure 4–13 shows the operation of the PUSH AX instruction. This instruction copies the contents of AX onto the stack where address

SS:3SP – 14 = AH, SS:3SP – 24 = AL , and afterwards SP = SP – 2. In 64-bit mode, 8 bytes of the stack are used to store the number pushed onto the stack.

The PUSHA instruction pushes all the internal 16-bit registers onto the stack, as illustrated in Figure 4–14. This instruction requires 16 bytes of stack memory space to store all eight 16-bit registers. After all registers are pushed, the contents of the SP register are decremented by 16. The PUSHA instruction is very useful when the entire register set (microprocessor environment) of the 80286 and above must be saved during a task. The PUSHAD instruction places the 32-bit register set on the stack in the 80386 through the Core2. PUSHAD requires 32 bytes of stack storage space.

Data Movement Instructions-0103Data Movement Instructions-0104

stack, assembles as 6A08H. The PUSH 1000H instruction assembles as 680010H. Another example of PUSH immediate is the PUSH ‘A’ instruction, which pushes a 0041H onto the stack. Here, the 41H is the ASCII code for the letter A.

Table 4–8 lists the forms of the PUSH instruction that include PUSHA and PUSHF. Notice how the instruction set is used to specify different data sizes with the assembler.

POP

The POP instruction performs the inverse operation of a PUSH instruction. The POP instruction removes data from the stack and places it into the target 16-bit register, segment register, or a 16- bit memory location. In the 80386 and above, a POP can also remove 32-bit data from the stack and use a 32-bit address. The POP instruction is not available as an immediate POP. The POPF (pop flags) instruction removes a 16-bit number from the stack and places it into the flag register; the POPFD removes a 32-bit number from the stack and places it into the extended flag register. The POPA (pop all) instruction removes 16 bytes of data from the stack and places them into the following registers, in the order shown: DI, SI, BP, SP, BX, DX, CX, and AX. This is the reverse order from the way they were placed on the stack by the PUSHA instruction, causing the same data to return to the same registers. In the 80386 and above, a POPAD instruction reloads the 32-bit registers from the stack.

Suppose that a POP BX instruction executes. The first byte of data removed from the stack (the memory location addressed by SP in the stack segment) moves into register BL. The second byte is removed from stack segment memory location SP + 1 and is placed into register BH. After both bytes are removed from the stack, the SP register is incremented by 2. Figure 4–15 shows how the POP BX instruction removes data from the stack and places them into register BX. The opcodes used for the POP instruction and all of its variations appear in Table 4–9.

Note that a POP CS instruction is not a valid instruction in the instruction set. If a POP CS instruction executes, only a portion of the address (CS) of the next instruction changes. This makes the POP CS instruction unpredictable and therefore not allowed.

Initializing the Stack

When the stack area is initialized, load both the stack segment (SS) register and the stack pointer (SP) register. It is normal to designate an area of memory as the stack segment by loading SS with the bottom location of the stack segment.

Data Movement Instructions-0105

For example, if the stack segment is to reside in memory locations 10000H–1FFFFH, load SS with a 1000H. (Recall that the rightmost end of the stack segment register is appended with a 0H for real mode addressing.) To start the stack at the top of this 64K-byte stack segment, the stack pointer (SP) is loaded with a 0000H. Likewise, to address the top of the stack at location 10FFFH, use a value of 1000H in SP. Figure 4–16 shows how this value causes data to be pushed onto the top of the stack segment with a PUSH CX instruction. Remember that all segments are cyclic in nature—that is, the top location of a segment is contiguous with the bottom location of the segment.

In assembly language, a stack segment is set up as illustrated in Example 4–1. The first statement identifies the start of the stack segment and the last statement identifies the end of the stack segment. The assembler and linker programs place the correct stack segment address in SS and the length of the segment (top of the stack) into SP. There is no need to load these registers in your program unless you wish to change the initial values for some reason.

Data Movement Instructions-0106

An alternative method for defining the stack segment is used with one of the memory models for the MASM assembler only (refer to Appendix A). Other assemblers do not use models; if they do, the models are not exactly the same as with MASM. Here, the .STACK statement, fol- lowed by the number of bytes allocated to the stack, defines the stack area (see Example 4–2). The function is identical to Example 4–1. The .STACK statement also initializes both SS and SP. Note that this text uses memory models that are designed for the Microsoft Macro Assembler program MASM.

Data Movement Instructions-0107

If the stack is not specified by using either method, a warning will appear when the pro- gram is linked. The warning may be ignored if the stack size is 128 bytes or fewer. The system automatically assigns (through DOS) at least 128 bytes of memory to the stack. This memory section is located in the program segment prefix (PSP), which is appended to the beginning of each program file. If you use more memory for the stack, you will erase information in the PSP that is critical to the operation of your program and the computer. This error often causes the computer program to crash. If the TINY memory model is used, the stack is automatically located at the very end of the segment, which allows for a larger stack area.

Leave a comment

Your email address will not be published. Required fields are marked *