Channel Coding
In most recorders used for storing digital information, the medium carries a track that reproduces a single waveform. Clearly, data words representing audio samples contain many bits and so they have to be recorded serially, a bit at a time. Some media, such as optical or magnetic disks, have only one active track, so it must be totally self-contained. Tape-based recorders may have several tracks read or written simultaneously. At high recording densities, physical tolerances cause phase shifts, or timing errors, between tracks and so it is not possible to read them in parallel. Each track must still be self- contained until the replayed signal has been time base corrected.
Recording data serially is not as simple as connecting the serial output of a shift register to the head. In digital audio, samples may contain strings of identical bits. For example, silence in digital audio is represented by samples in which all the bits are zero. If a shift register is loaded with such a sample and shifted out serially, the output stays at a constant level for the period of the identical bits, and nothing is recorded on the track. On replay there is nothing to indicate how many bits were present or even how fast to move the medium. Clearly, serialized raw data cannot be recorded directly, they must be modulated into a waveform that contains an embedded clock irrespective of the values of the bits in the samples. On replay, a circuit called a data separator can lock to the embedded clock and use it to separate strings of identical bits.
The process of modulating serial data to make them self-clocking is called channel coding. Channel coding also shapes the spectrum of the serialized waveform to make it more efficient. With a good channel code, more data can be stored on a given medium. Spectrum shaping is used in optical disks to prevent data from interfering with the focus and tracking servos and in hard disks and in certain tape formats to allow rerecording without erase heads.
Channel coding is also needed to broadcast digital signals where shaping of the spectrum is an obvious requirement to avoid interference with other services.