starters and speed controllers : definite time controller, electronic controllers and summary of starters and speed controllers.

22–10 DEFINITE TIME CONTROLLER

This controller reduces starting resistance at a predetermined rate as the motor accelerates toward the desired speed. The contactors that close to accomplish this are controlled by either a small, motor-driven timer or by one of several types of magnetic timing devices. The schematic diagram, Figure 22–28, shows a definite time controller with two timing relays that accelerate the motor by sequentially cutting out resistors R1 and R2.

Here is how the circuit functions: Closing the start button completes the control circuit from line 1 to point 5, energizing relay coils M and TR1. This starts the motor turning by connecting the armature, through the two series resistors, to the line. Note that the field coil is connected directly to the line and is not affected by the series resistors.

image

Meanwhile, the timing relay TR1 pulls the plunger up into the coil at a rate deter- mined by its time escapement mechanism. After a predetermined time, the plunger is pulled up as far as possible, closing the normally open contacts of TR1 (points 1 and 6). This action simultaneously energizes acceleration relay A1 and timing coil TR2. As a result, resistor R1 is cut out of the circuit, allowing the motor to accelerate. After a further time delay, TR2 times out and energizes the second acceleration relay A2.

The escapement mechanism in Figure 22–29, left, controls the time required for the solenoid coil to pull up the plunger. TR1 closes first, energizing relay coil A1. Then after the definite time interval, contactors TR2 close, energizing coil A2. The front and

image

right side views in Figure 22–29 show the normally open TR contactors, which act as sealing contactors around the start button. Nearby are the normally closed contacts, which are connected across part of the TR solenoid coil.

The starting overload and running overload protection used with this controller functions practically the same as for the other types of automatic controllers previously described.

22–11 ELECTRONIC CONTROLLERS

In automated machine operations, DC motors are driven by electronically con- trolled rectifiers that get their power directly from an AC line. We have seen, in Section 21–8, how silicon-controlled rectifiers can be employed for speed control by sending triggering pulses to the gate. The implication was that some manual control is provided for the operator to monitor and regulate the performance of the machine. In automated equipment, the driven machine continuously feeds back information to a master control to maintain any reasonable combination of speed and torque desired; see Figure 22–30.

The program control is any system based on punch cards, magnetic tape, or micro- processors that causes the machine to follow a prescribed sequence of operations. These kinds of devices are faster acting and more reliable than electromechanical relays and/or timing devices. Such devices were developed in response to the demands of highly

image

specialized, high-speed manufacturing processes. The electronics industry responded with modular solid-state devices.

One such system was known as static control and embodied circuits known as logic gates, such as AND gates, NOR gates, NOT gates, OFF RETURN MEMORY, and J-K flip flops.

With the development of microprocessors and computers, a new product was born: the programmable controller (PC). The PC is a solid-state device designed to perform the logic functions previously accomplished by electromechanical relays, drum switches, mechanical timers, and counters. Internally, there are still logic gates, but they have now been wedded with the graphic display of relay ladder logic, which is understood by all competent electricians.

To achieve such competencies, you will have to continue your studies and expand your knowledge in the field of industrial electronics.

SUMMARY

• DC motors have an extremely high starting current due to low armature resistance and low counter-emf.

• Starting rheostats are not intended for speed control.

• No-voltage release is a safety feature used to prevent the automatic restarting of a motor at the end of a power failure.

• Speed controllers are designed to accelerate a motor to normal speed and to vary the speed.

• For above-normal speeds, resistance is added to the shunt field.

• For below-normal speeds, the starting resistance is reinserted into the armature circuit.

• Series motors require a special type of starting rheostat.

• Series motor starters come with either no-voltage protection or no-load protection.

• Drum controllers are used where the motor is under direct control of an operator and when frequent starting, stopping, reversing, and varying of speeds are necessary.

• Review circuitry and sequence of operations for

a. The counter-emf controller

b. The voltage drop acceleration controller

c. The definite time controller

• Dynamic braking stops a motor by making it act as a generator. It converts its rotational energy to electrical energy and then to heat in a resistor.

• Electrical interlocking is a system for ensuring that one device is disconnected before an interfering or contradictory device is energized.

Achievement Review

1. Show the connections for a three-terminal manual starting rheostat connected to a shunt motor.

2. Give one advantage and one disadvantage of a three-terminal manual starting rheostat.

3. Show the connections for a four-terminal manual starting rheostat connected to a cumulative compound motor. Include a separate field rheostat in the shunt field circuit for speed control.

4. Give one advantage and one disadvantage of a four-terminal manual starting rheostat.

5. A three-terminal manual starting rheostat has a resistance of 5.2 ohms in its starting resistor. The holding coil resistance is 10 ohms. This starting rheostat is connected to a shunt motor. The resistance of the armature is 0.22 ohm; the resistance of the shunt field is 100 ohms. The line voltage for this motor circuit is 220 volts.

a. Determine the starting surge of current taken by the motor.

b. The motor has a full-load current rating of 30 amperes. National Fire Under- writers requires the starting surge of current to be not greater than 150% of a motor’s full-load current rating. Show with computations whether this manual starting rheostat complies with this requirement.

6. Using the data in question 5, determine

a. The current in the holding coil with the movable arm in the run position

b. The counter-electromotive force with the movable arm in the on position if the armature current is 20 amperes

7. Explain the difference between a manual starting rheostat and a manual speed controller.

8. Why does one type of manual starting rheostat used with series motors have no-load protection?

9. State the applications of the drum controller. Why is it desirable in these applications?

image

10. Explain why a shunt motor’s direction of rotation does not change if the connections of the two wires are reversed.

11. What is the function of a holding coil in a manual starting rheostat?

12. Explain how to reverse the direction of rotation of

a. A shunt motor

b. A series motor

c. A cumulative compound motor

13. Complete the internal and external connections for the above-normal speed controller and cumulative compound motor shown on page 429.

14. Complete the internal and external connections for the above-and-below-normal speed controller and cumulative compound motor illustrated below.

image

15. Draw the graphic symbols (JIC standards, see Figure A–12 in the Appendix) representing the following components:

a. N.O. limit switch

b. N.C. limit switch held open

c. N.O. timer contact (action retarded upon energizing)

d. N.C. pressure switch

e. N.O. float switch (for liquid level)

f. N.C. flow switch (for air or water)

g. N.O. contact with blowout

h. Thermal overload

16. A DC shunt motor is rated at 40 amps, 115 volts, 5 horsepower. Calculate the proper current rating for a thermal overload unit to install in a cemf controller to serve as proper running overload protection. Also, determine the size of the fuses that should be used as starting protection.

17. Complete the diagram below by making all connections necessary to put the motor across the line without a starting resistance. Provide for dynamic breaking when the motor is stopped.

image

18. a. Which of the three types of controllers discussed in this chapter is represented by the drawing below?

b. Explain the sequence of operation.

image

19. a. Which of the three types of controllers discussed in this chapter is repre- sented by the drawing below?

b. What adjustment could be made to change the acceleration speed of the motor?

image

20. a. Which of the three types of controllers discussed in this chapter is repre- sented by the drawing below?

b. Does the voltage drop across the resistors increase or decrease when the motor accelerates? Explain.

image

 

Starters and speed controllers : the counter-electromotive force motor controller and the voltage drop acceleration controller (lockout acceleration).

22–8 THE COUNTER-ELECTROMOTIVE FORCE MOTOR CONTROLLER

The counter-emf controller, shown in Figure 22–22, is a commonly used method for the automatic acceleration of a DC motor. First, the line switch is closed. When the start button is pressed, relay coil M is energized. This control circuit remains energized because the sealing contacts are closed, as previously described.

image

When coil M in the control circuit is energized, it closes a heavy pair of contactors, M 6–7, in the power circuit. The closing of these contactors establishes a circuit from line 1 through the overload device 1–6. Such an overload device generally operates when excessive heat develops due to overload. This device is commonly known as thermal overload protection. The circuit continues through the M contactors, through the current-limiting resistor in series with the armature, and through the armature windings to the other side of the line. The shunt field is directly across the full-line voltage and ensures maximum starting torque.

At the instant the motor circuit is energized, the counter-emf is 0 and nearly all of the line voltage is expended on the current-limiting resistor in series with the armature. As the armature accelerates, the counter-emf increases in proportion to the speed. With increased counter-emf, more of the line voltage appears across the armature terminals and the accelerating relay coil A. This coil is in parallel with the armature terminals. Relay coil A is calibrated to close its contactors when about 80% of the rated line voltage is applied to the coil. When the voltage across the armature terminals reaches this predetermined value (80% of the line voltage), coil A closes contactors A. These contactors then shunt out the resistor in series with the armature. The armature is now connected directly across the line voltage, and the motor accelerates to its rated speed.

Pressing the stop button breaks the control circuit, and both sets of M contactors open to disconnect the motor from the line. As the armature slows down, coil A cannot hold its contactors closed. With the A contactors open, the current-limiting resistor is again connected in series with the armature. Now the motor is again ready to be started.

Starting protection for this controller, or any DC automatic controller, consists of fuses or circuit breakers rated at 150% of the full-load current of the motor. Running overload protection is provided by the overload heater unit (O.L. 1–6). Overheating of this unit causes a bimetallic strip to trip open the normally closed contactor (O.L. 1–3) in the control circuit. The heater unit is rated at 125% of the full-load current rating of the motor. A continued overload on the motor for 45 to 60 seconds brings it into operation. The 150% starting current surge of 3 to 4 seconds does not produce enough heat to cause the thermal element to open its contactors.

Dynamic Braking

In some installations there is a need for quick stopping and immediate reversal of rotation. Dynamic braking is a method for quickly using up the mechanical energy of motion of the armature and its mechanical load after the armature circuit is opened. Dynamic braking is achieved by connecting a resistor across the armature at the instant the armature circuit is disconnected. This disconnected armature, rotating on its own momentum, is cutting flux and acts as a generator. The generated current quickly dissipates this mechanical energy by heating the resistor; thus, the motor stops quickly.

Figure 22–23 shows how dynamic braking facilities can be added to the previously described counter-emf controller. At starting, the same sequence of events takes place as described before.

Relay coil M and the dynamic braking coil, DBM 6–7, operate on one pivoted armature, as shown in Figure 22–24. When the start button is pressed, coil M closes

image

the normally open contactors and pulls open the one set of DBM contactors. As the motor accelerates, relay coil A shunts out the current-limiting resistor as before. Although the DBM coil is now energized by the full line voltage, coil M has already tipped the pivoted armature clockwise to open the DBM contact. Coil DBM is not strong enough to bring the armature back to the position shown in Figure 22–24; thus, the DBM contactors remain open while the motor operates normally.

When the stop button is pressed, coil M releases the pivoted relay armature. Since the shunt field of the motor is still connected to the line, the rotating armature of the motor generates a current that keeps coil DBM energized. Coil DBM is now able to pull contactors DBM to their normally closed position, coil M being de-energized. (Small coiled springs, not shown in Figure 22–24, help make this action more positive.) With DBM contactors closed, the dynamic braking resistor is connected directly across

image

the motor armature. Now the armature, acting as a generator, converts its mechanical energy into electrical energy that is quickly dissipated in the DBR resistor, and the motor armature comes to a quick stop. Coil A releases contactors A, reinserting the current-limiting resistor in series with the armature.

In the circuit of Figure 22–22, pressing the stop button disconnected the entire mo- tor circuit from this line. In that case, the collapsing magnetic field of the shunt field winding delivered its energy to the armature circuit. In the circuit of Figure 22–23, the armature is disconnected from the field when the stop button is pressed; therefore, a field discharge resistor (FDR) is connected across the field to dissipate the field energy when the line switch is opened.

Counter-emf Controller with Reversing and Dynamic Braking

In many applications, it is necessary not only to bring a motor to a quick stop but also to reverse the direction of rotation immediately. This is usually done by reversal of armature connections, as shown in the circuit in Figure 22–25.

When the forward button is pressed, the normally closed contact 4–7 opens and the normally open contact 4–5 closes. Relay coils 1F and 2F become energized, closing the 1F sealing contact 4–5 and the armature current contactors 1F and 2F. These normally closed contactors (1F) DB2 are held open by a relay like that of Figure 22–12. The (1F) DB2 contactors are held open so that the dynamic braking resistor is disconnected when the motor is energized. The normally open contactors DB2 (1F) at points 9–11 close and connect the accelerating relay coil A across the armature. As the motor accelerates,

image

relay coil A closes contactors A. Closing contactors A puts full-line voltage on the armature so the motor operates at rated speed.

Pressing the stop button opens the control circuit. The contactors 1F and 2F then open and disconnect the armature from the line. Contactors DB2 (1F) also open, de- energizing relay coil A, which opens contactors A. At the same time, the normally closed (1F) DB2 recloses and connects the dynamic braking resistor across the armature so that the motor stops quickly.

When the reverse button is pressed, the direction of current in the armature is reversed. The motor accelerates in the reverse direction, and when the armature emf is high enough, coil A closes contactors A and the motor operates at rated speed in the reverse direction. Use of the stop button opens contactors A and inserts the dynamic braking resistor into the circuit as before.

In the circuit in Figure 22–25, each forward and reverse push button has a nor- mally closed contact and also a normally open contact. This circuit arrangement makes it impossible to energize the reverse relays 1R and 2R until the forward relays 1F and 2F are de-energized. For example, if the reverse button is pressed, it first breaks contact at points 5–6 and de-energizes coils 1F and 2F before closing across points 7–8 and energizing relay coils 1R and 2R. The same protection exists if relay coils 1R and 2R are energized and the forward button is pressed. This type of connection arrangement, called electrical interlocking, is often used in control circuitry so that when one set of devices is operating, the circuit to a second set of devices cannot be energized at the same time.

22–9 THE VOLTAGE DROP ACCELERATION CONTROLLER (LOCKOUT ACCELERATION)

Large DC motors require controlled steps of acceleration. A series of resistors connected to lockout relays provide the means for smooth and uniform motor acceleration.

Like the counter-emf controller, the voltage drop acceleration controller makes use of these facts:

1. At the instant of starting, armature current is high and voltage across the armature is low. Voltage losses across each of the current-limiting resistors, connected in series, are high.

2. As the motor accelerates, the counter-emf increases and the armature current de- creases; therefore, the voltage drop across the current-limiting resistors, in series with the armature, decreases. Relays, connected across these resistors, are calibrated to operate and shunt out the starting resistors in a definite sequence as the armature speed increases.

The sketch in Figure 22–26 shows a typical lockout relay. Two coils affect the one pivoted armature. The normally open contacts can be held open by the lockout coil, even if the pull-in coil is energized. With reduced current in the lockout coil, the energized pull-in coil can tip the armature and close the contacts. Each of the three relays in the schematic diagram, Figure 22–27, is the same as in Figure 22–26. Relay coils marked 1A, 2A, and 3A are pull-in coils. Relay coils marked 1LA, 2LA, and 3LA are lockout coils.

Figure 22–27 shows a voltage drop acceleration controller connected to a cumulative compound motor. Since there are three resistors, there are three steps of acceleration. After the line switch is closed, pressure on the start button energizes relay coil M in the control circuit. Coil M closes main contactors M 9–10, which both closes the armature circuit and connects the shunt field across the line.

image

The initial current through the starting resistors R1, R2, and R3 produces a relatively large voltage drop across each section of starting resistance; therefore, the lockout coil (LA) of each relay has a relatively high voltage across it and can hold the accelerating contactors 1A, 2A, and 3A open. At the instant of starting, coil M also closes the sealing contactors M 3–6 and M 6–4. The short time interval required for closing these contacts ensures that the pull-in coils 1A, 2A, and 3A become energized no sooner than the lockout coils.

The lockout relays are calibrated to operate and shunt out sections of starting resistance in a definite sequence as the armature accelerates. As current through the series resistors decreases during acceleration, less voltage is impressed on lockout coil 1 LA. Its pull on the movable contactor becomes less than that of pull-in coil 1A; therefore, pull-in coil 1A can close contactors 1A and shunt out resistor R1. As R1 is cut out of the circuit, current increases but decreases again as the motor continues to accelerate. Soon the voltage across 2 LA is low enough to allow pull-in coil 2A to close contactors 2A and shunt out R2. Then R3 is cut out in the same manner as R1 and R2. Thus, the motor is accelerated to rated speed in three steps.

image

 

Starters and speed controllers : the counter-electromotive force motor controller and the voltage drop acceleration controller (lockout acceleration).

22–8 THE COUNTER-ELECTROMOTIVE FORCE MOTOR CONTROLLER

The counter-emf controller, shown in Figure 22–22, is a commonly used method for the automatic acceleration of a DC motor. First, the line switch is closed. When the start button is pressed, relay coil M is energized. This control circuit remains energized because the sealing contacts are closed, as previously described.

image

When coil M in the control circuit is energized, it closes a heavy pair of contactors, M 6–7, in the power circuit. The closing of these contactors establishes a circuit from line 1 through the overload device 1–6. Such an overload device generally operates when excessive heat develops due to overload. This device is commonly known as thermal overload protection. The circuit continues through the M contactors, through the current-limiting resistor in series with the armature, and through the armature windings to the other side of the line. The shunt field is directly across the full-line voltage and ensures maximum starting torque.

At the instant the motor circuit is energized, the counter-emf is 0 and nearly all of the line voltage is expended on the current-limiting resistor in series with the armature. As the armature accelerates, the counter-emf increases in proportion to the speed. With increased counter-emf, more of the line voltage appears across the armature terminals and the accelerating relay coil A. This coil is in parallel with the armature terminals. Relay coil A is calibrated to close its contactors when about 80% of the rated line voltage is applied to the coil. When the voltage across the armature terminals reaches this predetermined value (80% of the line voltage), coil A closes contactors A. These contactors then shunt out the resistor in series with the armature. The armature is now connected directly across the line voltage, and the motor accelerates to its rated speed.

Pressing the stop button breaks the control circuit, and both sets of M contactors open to disconnect the motor from the line. As the armature slows down, coil A cannot hold its contactors closed. With the A contactors open, the current-limiting resistor is again connected in series with the armature. Now the motor is again ready to be started.

Starting protection for this controller, or any DC automatic controller, consists of fuses or circuit breakers rated at 150% of the full-load current of the motor. Running overload protection is provided by the overload heater unit (O.L. 1–6). Overheating of this unit causes a bimetallic strip to trip open the normally closed contactor (O.L. 1–3) in the control circuit. The heater unit is rated at 125% of the full-load current rating of the motor. A continued overload on the motor for 45 to 60 seconds brings it into operation. The 150% starting current surge of 3 to 4 seconds does not produce enough heat to cause the thermal element to open its contactors.

Dynamic Braking

In some installations there is a need for quick stopping and immediate reversal of rotation. Dynamic braking is a method for quickly using up the mechanical energy of motion of the armature and its mechanical load after the armature circuit is opened. Dynamic braking is achieved by connecting a resistor across the armature at the instant the armature circuit is disconnected. This disconnected armature, rotating on its own momentum, is cutting flux and acts as a generator. The generated current quickly dissipates this mechanical energy by heating the resistor; thus, the motor stops quickly.

Figure 22–23 shows how dynamic braking facilities can be added to the previously described counter-emf controller. At starting, the same sequence of events takes place as described before.

Relay coil M and the dynamic braking coil, DBM 6–7, operate on one pivoted armature, as shown in Figure 22–24. When the start button is pressed, coil M closes

image

the normally open contactors and pulls open the one set of DBM contactors. As the motor accelerates, relay coil A shunts out the current-limiting resistor as before. Although the DBM coil is now energized by the full line voltage, coil M has already tipped the pivoted armature clockwise to open the DBM contact. Coil DBM is not strong enough to bring the armature back to the position shown in Figure 22–24; thus, the DBM contactors remain open while the motor operates normally.

When the stop button is pressed, coil M releases the pivoted relay armature. Since the shunt field of the motor is still connected to the line, the rotating armature of the motor generates a current that keeps coil DBM energized. Coil DBM is now able to pull contactors DBM to their normally closed position, coil M being de-energized. (Small coiled springs, not shown in Figure 22–24, help make this action more positive.) With DBM contactors closed, the dynamic braking resistor is connected directly across

image

the motor armature. Now the armature, acting as a generator, converts its mechanical energy into electrical energy that is quickly dissipated in the DBR resistor, and the motor armature comes to a quick stop. Coil A releases contactors A, reinserting the current-limiting resistor in series with the armature.

In the circuit of Figure 22–22, pressing the stop button disconnected the entire mo- tor circuit from this line. In that case, the collapsing magnetic field of the shunt field winding delivered its energy to the armature circuit. In the circuit of Figure 22–23, the armature is disconnected from the field when the stop button is pressed; therefore, a field discharge resistor (FDR) is connected across the field to dissipate the field energy when the line switch is opened.

Counter-emf Controller with Reversing and Dynamic Braking

In many applications, it is necessary not only to bring a motor to a quick stop but also to reverse the direction of rotation immediately. This is usually done by reversal of armature connections, as shown in the circuit in Figure 22–25.

When the forward button is pressed, the normally closed contact 4–7 opens and the normally open contact 4–5 closes. Relay coils 1F and 2F become energized, closing the 1F sealing contact 4–5 and the armature current contactors 1F and 2F. These normally closed contactors (1F) DB2 are held open by a relay like that of Figure 22–12. The (1F) DB2 contactors are held open so that the dynamic braking resistor is disconnected when the motor is energized. The normally open contactors DB2 (1F) at points 9–11 close and connect the accelerating relay coil A across the armature. As the motor accelerates,

image

relay coil A closes contactors A. Closing contactors A puts full-line voltage on the armature so the motor operates at rated speed.

Pressing the stop button opens the control circuit. The contactors 1F and 2F then open and disconnect the armature from the line. Contactors DB2 (1F) also open, de- energizing relay coil A, which opens contactors A. At the same time, the normally closed (1F) DB2 recloses and connects the dynamic braking resistor across the armature so that the motor stops quickly.

When the reverse button is pressed, the direction of current in the armature is reversed. The motor accelerates in the reverse direction, and when the armature emf is high enough, coil A closes contactors A and the motor operates at rated speed in the reverse direction. Use of the stop button opens contactors A and inserts the dynamic braking resistor into the circuit as before.

In the circuit in Figure 22–25, each forward and reverse push button has a nor- mally closed contact and also a normally open contact. This circuit arrangement makes it impossible to energize the reverse relays 1R and 2R until the forward relays 1F and 2F are de-energized. For example, if the reverse button is pressed, it first breaks contact at points 5–6 and de-energizes coils 1F and 2F before closing across points 7–8 and energizing relay coils 1R and 2R. The same protection exists if relay coils 1R and 2R are energized and the forward button is pressed. This type of connection arrangement, called electrical interlocking, is often used in control circuitry so that when one set of devices is operating, the circuit to a second set of devices cannot be energized at the same time.

22–9 THE VOLTAGE DROP ACCELERATION CONTROLLER (LOCKOUT ACCELERATION)

Large DC motors require controlled steps of acceleration. A series of resistors connected to lockout relays provide the means for smooth and uniform motor acceleration.

Like the counter-emf controller, the voltage drop acceleration controller makes use of these facts:

1. At the instant of starting, armature current is high and voltage across the armature is low. Voltage losses across each of the current-limiting resistors, connected in series, are high.

2. As the motor accelerates, the counter-emf increases and the armature current de- creases; therefore, the voltage drop across the current-limiting resistors, in series with the armature, decreases. Relays, connected across these resistors, are calibrated to operate and shunt out the starting resistors in a definite sequence as the armature speed increases.

The sketch in Figure 22–26 shows a typical lockout relay. Two coils affect the one pivoted armature. The normally open contacts can be held open by the lockout coil, even if the pull-in coil is energized. With reduced current in the lockout coil, the energized pull-in coil can tip the armature and close the contacts. Each of the three relays in the schematic diagram, Figure 22–27, is the same as in Figure 22–26. Relay coils marked 1A, 2A, and 3A are pull-in coils. Relay coils marked 1LA, 2LA, and 3LA are lockout coils.

Figure 22–27 shows a voltage drop acceleration controller connected to a cumulative compound motor. Since there are three resistors, there are three steps of acceleration. After the line switch is closed, pressure on the start button energizes relay coil M in the control circuit. Coil M closes main contactors M 9–10, which both closes the armature circuit and connects the shunt field across the line.

image

The initial current through the starting resistors R1, R2, and R3 produces a relatively large voltage drop across each section of starting resistance; therefore, the lockout coil (LA) of each relay has a relatively high voltage across it and can hold the accelerating contactors 1A, 2A, and 3A open. At the instant of starting, coil M also closes the sealing contactors M 3–6 and M 6–4. The short time interval required for closing these contacts ensures that the pull-in coils 1A, 2A, and 3A become energized no sooner than the lockout coils.

The lockout relays are calibrated to operate and shunt out sections of starting resistance in a definite sequence as the armature accelerates. As current through the series resistors decreases during acceleration, less voltage is impressed on lockout coil 1 LA. Its pull on the movable contactor becomes less than that of pull-in coil 1A; therefore, pull-in coil 1A can close contactors 1A and shunt out resistor R1. As R1 is cut out of the circuit, current increases but decreases again as the motor continues to accelerate. Soon the voltage across 2 LA is low enough to allow pull-in coil 2A to close contactors 2A and shunt out R2. Then R3 is cut out in the same manner as R1 and R2. Thus, the motor is accelerated to rated speed in three steps.

image

 

Dc motors: speed control of dc motors, reversal of rotation, power losses, permanent-magnet motors and summary of dc motors

21–8 SPEED CONTROL OF DC MOTORS

Not all electric motors are suited to have their speed controlled with smooth acceleration or deceleration. DC motors do have this ability. Speed is easily controlled in shunt motors by placing a rheostat in series with the shunt field, thereby varying the current and, consequently, the flux, as shown in Figure 21–18.

Many students of electricity make the wrong assumption that increased resistance will slow the motor. This is not so; just the opposite will occur. When the resistance is increased, the current and therefore the magnetic flux are decreased; thus, the motor speeds up. This happens because a reduction in flux will reduce the cemf, which in turn increases the armature current. As we have seen earlier, these events lead to increased torque and increased speed. Our shorthand notation would describe this chain of events as follows:

image

Needless to say, the opposite actions occur when the field resistance is decreased.

image

It would also be possible to vary the speed of the motor by adding a rheostat into the armature circuit. This, however, is not a desirable practice because armature circuits generally draw a lot of current and the resulting I2R losses would be prohibitively large. This also results in poorer speed regulation.

The term normal speed refers to the speed of the motor without any speed control mechanism in place and full voltage across the field and armature.

We have already seen that added resistance in the shunt circuit will result in above-normal speed. There are occasions, however, when a motor must be operated at below-normal speed, at which time it becomes necessary to insert resistance into the armature circuit. This may not be a happy solution to the problem, but it surely reduces the speed by decreasing the armature current. In this respect, there is no difference between the shunt motor and the compound motor.

Note: The practical and preferred way to vary the speed of a DC motor is by varying the resistance in the shunt field circuit.

Unfortunately, like everything else in life, this method presents us with mixed blessings. In other words, controlling speed by varying the field’s magnetic strength has some drawbacks, too. With the reduction of magnetic flux, there is a corresponding reduction in the production of torque. This means that a desired speed increase brings with it a reduction in torque.

In this respect, armature control appears to be superior. In order to speed up the motor, we would increase the current through the armature (by varying a rheostat). The motor reacts to limit the current increase by speeding up and producing more counter-emf. Since the strength of the magnetic field remains unchanged, the torque will not suffer.

On the other hand, rheostats in the armature circuit would have to be unreason- ably large to handle the armature current. As mentioned before, the resulting I2R losses would be costly, and the efficiency and speed regulation of the motor would suffer. A solution of this dilemma would call for armature control without rheostats. This innovation came about with the introduction of electronic devices known as thyristors.

Electronic Speed Control

The rapid development of solid-state devices during the last few decades has brought about some extraordinary changes in the control of electric power. Semiconductor devices, known as thyristors, can control vast amounts of power with only very small amounts of

image

input power. Such devices have ushered in a new era of industrial electronics, aimed at the control of electrical power and machines.

The silicon-controlled rectifier (SCR) is the most popular device among the thyristors. Thyristors can be defined as electronic switches. The SCR can be switched rapidly, thousands of times per second, without any moving parts. The schematic symbol of the SCR is shown in Figure 21–19, where it is shown connected, like a switch, in series with the armature of a shunt motor. An electrical pulse at the gate will trigger the device into its on position.

You may have already noticed that the DC motor is shown connected to an AC source. In spite of this, the motor does operate on DC. The field receives DC from a bridge rectifier, and the armature receives rectified DC from the SCR. In addition to providing rectification, the SCR controls the average armature voltage and current by pulsing the current through the armature in response to the trigger pulses received by the gate. This action, in turn, controls the speed of the motor. The trigger pulses at the gate are regulated by special electronic circuits, thereby controlling the amount of energy delivered to the motor.

As you progress in your studies of electronics, you will encounter such devices time and again, and you will then have to study their principles of operation. For the time being, it will suffice for you to realize that such electronic devices and techniques have invaded the domain of industrial electricity, and that electronic devices, such as the SCR, will be used increasingly to replace rheostats in the use of motor control.

21–9 REVERSAL OF ROTATION

If you recall that torque in an electric motor depends on the interaction of two magnetic fields, you may easily understand that the direction of rotation depends on the magnetic polarity these fields have with respect to each other.

Figure 21–20 illustrates that the forces of repulsion and attraction can be changed by reversing the polarity of the armature with respect to the polarity of the field coils, and vice versa. This will also explain why it is generally not possible to affect reversal

image

simply by changing the leads of the power source. This technique works only with motors in which the field is provided by permanent magnets, or permanent-magnet (PM) motors. Small, electric toy motors are generally of this kind and can be easily reversed by merely switching the power leads.

By contrast, all motors with electromagnetic fields can be reversed by changing the leads of their field winding. When this is done, the armature leads remain unchanged. Remember, motor reversal is achieved by switching either the field winding or the armature leads, but not both. The wires leading to the armature are generally labeled A1 and A2, and the terminals of the shunt field are marked F1 and F2. Let us assume that a given motor is turning clockwise when its A1 terminal is connected to F1 and A2 is connected to F2; see Figure 21–21A. If it should become necessary to change the direction of rotation, it is only necessary to reconnect the wires A1 to F2 and A2 to F1; see Figure 21–21B.

When compound motors are to be reversed, it is best to switch just the connections

to the armature. If the design of the machine makes it easier to change the field coils, it must be remembered to change both the shunt and the series field. (The terminals of the

image

series fields are labeled S1 and S2.) If only one of the two field windings were switched around, the motor would change its characteristic of a cumulative compound motor to that of a differentially compounded machine, or vice versa.

When frequent reversal of a motor is desired, the installation of a double-pole, double-throw (DPDT) switch will facilitate the task. Figure 21–22 shows how the switch changes the direction of the current through the armature and, consequently, the direction of the motor.

Determining the Direction of Rotation of a DC Motor

The direction of rotation of a DC motor is determined by facing the commutator end of the motor. This is generally the back or rear of the motor. If the windings have been labeled in a standard manner, it is possible to determine the direction of rotation when the motor is connected. Figure 21–23 illustrates the standard connections for a series motor. The standard connections for a shunt motor are illustrated in Figure 21–24, and those for a compound motor in Figure 21–25.

The direction of rotation of a DC motor can be reversed by changing the connections of either the armature or the field leads. It is common practice to change the armature leads, to prevent changing a cumulative compound motor into a differential compound motor. However, if a motor contains only a shunt field, there is no danger of changing the motor from a cumulative to a differential compound motor. Thus the shunt field lead connections are often changed on small motors because the amount of current flow through the field is much less than the current flow through the armature.

Large compound motors often use a control circuit, as shown in Figure 21–26, that uses magnetic contactors to reverse the flow of current through the armature. If we trace the circuit, we see that when the forward or reverse direction is chosen, only the current through the armature changes direction. The current flow through the shunt and series fields remains the same.

image

21–10 POWER LOSSES

Power losses in electric motors are classified, just as they were for generators, as I2R losses and stray power losses. This was explained in Section 19–9, which you may want to review at this time. The drawing used in conjunction with that explanation is similar to Figure 21–27, which illustrates the relationship between useful and useless energies in a motor.

The drawing presents an analogy between a machine and a conduit, both of which have an input on one side and an output on the other. The conduit has some leaks through which various losses are incurred, thereby causing the output to be less than the input. This ratio of output to input is, of course, known as efficiency. This, too, may be reviewed in Section 19–9.

EXAMPLE 21–4

Given: A shunt motor with a 200-ohm field and a 0.4-ohm armature. At no load, the motor takes 3 amperes on a 220-volt line.

Find: The stray power losses.

Solution

image

image

image

21–11 PERMANENT-MAGNET MOTORS

Up to this point we have discussed the three types of DC motors with electromagnetic field coils: shunt, series, and compound motors. These motors have been the traditional workhorses of industry wherever the specifications called for variable load or speed applications (or both).

Naturally, the field coils can be replaced with permanent magnets, thereby creating a permanent-magnet, or PM, motor. For many decades PM motors have had limited applications. They were often used for powering electrical toys and for various applications in automobiles, such as windshield wipers and window lifts. This trend has now been reversed as a consequence of new, sophisticated developments in electronics, as well as improved design of rare-earth and ceramic magnets. As a result, the PM motor has become a favorite in high-technology applications involving motion control, such as robotics.

image

PM motors can be broadly classified as being either

1. Brush-type PM motors (mechanically commutated)

2. Brushless PM motors (electronically commutated)

Of these categories, the brush-type PM motor is the prevalent one, although this trend may change as the cost of electronic commutation circuits further decreases.

Brush-Type PM Motors

As previously stated, the key feature that distinguishes the PM motor from a shunt motor is the replacement of the shunt field winding with permanent magnets.

Figure 21–28 is meant to convey the idea that for any given horsepower rating the PM motor can be made much smaller in size and weight. This is one of the advantages of PM motors, which derives from the fact that heat losses of the field coils have been eliminated, lessening the need for ventilation. The reduction of electrical losses also makes the PM motor somewhat more energy efficient.

The brush-type PM motor uses the same commutation arrangement you have come to know in conventional wire-wound field motors. In other words, current is carried to the armature by a pair of spring- loaded carbon brushes that ride on the commutator. Recall that if the armature had a single winding only, it would rotate only until the magnetic fields reach an equilibrium position. To achieve continuous motion, the armature has multiple windings, which are sequentially energized and de-energized through the brush and commutator assembly. Thus a nearly constant force of magnetic attraction and repulsion between the armature and the field sustains the rotary motion and torque output.

You will remember that motor performance is described in terms of rotational speed and torque output. The horsepower output derived from a motor is directly proportional to the product of speed and torque, or, mathematically speaking:

Php = N x Torque x rpm

Compare this with the equation shown under the heading “Calculation of Horsepower” in Chapter 20, which has been simplified here to show that the torque output is expected to increase whenever speed decreases.

image

This expectation is more fully realized with permanent-magnet motors than with electro- magnetic motors (those with field windings). PM motors are said to have a more linear speed–torque characteristic. This is shown by comparison of Figures 21–29A and 21–29B. The linear characteristic of the PM motors occurs because armature reaction within them is virtually eliminated. This makes for predictable performance in high-technology

applications such as robotics, where precise motion control is very important.

Brushless PM Motors

Advanced electronic technology gave rise to the development of the brushless PM motor, in which the conventional commutator and brush assembly is replaced by a complex electronic commutation system. This calls for radical design changes. The armature and the PM field have their positions interchanged. That is to say, the armature winding is no longer rotating, but is mounted within the outer frame structure, and is now called the stator. Consequently, the permanent magnets are mounted on the revolving structure of the motor, which is now referred to as the rotor, as shown in Figure 21–30.

The coils of the stationary armature, or stator, are generally arranged in a three-phase configuration. The term three-phase is generally associated with alternating current (AC) and implies the use of three-coil windings as shown in Figure 21–31.

Recall that in conventional motors the armature windings are sequentially turned on and off by making or breaking contact with pairs of commutator segments, thereby assuring the correct relationship between the field flux and the armature flux. In a brushless motor, this critical relationship is maintained by electronic sensors that monitor the position of the revolving PM field with respect to the stationary armature. They generate a feedback signal that

image

is applied to appropriate control circuits, which then deliver current sequentially to the stationary armature. A nearly constant spatial relationship is maintained between the magnetic fields of the stator and the rotor, thereby developing the desired torque; see Figure 21–32.

The operating characteristics of brushless PM motors are similar to those of brush-type PM motors. That is to say, they have a high starting torque and maintain a linear torque-to- speed relationship over their full range of operation.

It is noteworthy that the maximum torque obtainable from a DC motor is limited by commutation rather than by heating. If the armature current becomes excessive, severe arcing may ruin the brushes and commutator. In spite of this limitation, brush-type PM motors are more widely sold than brushless PM motors, mainly because of their lower cost.

image

However, brushless PM motors have become very popular for variable-speed applications such as air handlers found in the air-conditioning field. The speed of the brush- less PM motor can be controlled by changing the frequency of the three-phase power applied to the stator field. The electronic controls necessary for making this conversion are generally located inside the motor housing, as shown in Figure 21–33.

As stated earlier, these desirable characteristics make PM motors strong contenders in the market for fractional horsepower motors that provide precise motion control.

image

SUMMARY

• The left-hand rule applies to generators, while the right-hand rule applies to motors.

• Torque is proportional to flux and armature current. Increase of either increases torque.

• Counter-emf is proportional to flux and rpm. Increase of either increases emf.

• The amount of counter-emf determines the useful mechanical output from the motor.

• Armature windings of motors are similar to those of generators. Lap windings are suit- able for high-current applications, while wave windings sacrifice current for high- voltage applications.

• In motors, the interpoles have the same polarity as the main pole directly in back of them (with respect to the direction of rotation). This is opposite to the placement of interpoles in generators.

• The shunt motor has its field coils in parallel with the armature. Its constant field strength limits input current and speed at no load.

• A shunt motor accelerates to excessive speeds when the shunt field is lost.

• The series motor has its field coil in series with the armature. At no load, reduced field permits enough current to produce torque that accelerates the motor greatly. At heavy load, the torque is high, the speed is low.

• A series motor accelerates to excessive speeds when the load is lost.

• When the advantages of series and shunt motors are compared, it is seen that the shunt motor has the more constant speed, but a series motor of the same horsepower rating can exert a much greater torque, when necessary, without a large increase in current.

• Compound motors have both series and shunt fields. The relative ampere-turns of the two fields determine the speed and torque characteristics of the motor.

• Generally, compound motors are cumulatively compounded and long-shunt connected.

• Weakening the field speeds up the shunt motor; reduced armature current slows the shunt motor.

• Speed control can be achieved by either changing the current in the field or in the armature.

• When rheostats are used for speed control, the preferred placement of the rheostat is in the shunt field circuit.

• Armature control is the preferred method when electronic components are used to vary the speed.

Achievement Review

1. An armature, resistance 0.47 ohm, is supplied with 124 volts DC and 40 amperes. Calculate

a. The volts used to overcome the resistance of the armature

b. The volts used to make mechanical energy (counter-emf)

c. The horsepower output

d. The efficiency

e. The watts heating rate

2. Calculate the current in the armature of question 1 if the armature stalled because of overload.

3. Determine the direction of the rotation of the armatures shown in Figures 21–4 and 21–7.

4. What is the polarity of interpoles in reference to the polarity of main field poles in a direct current motor?

5. a. Show with characteristic curves the speed and torque performance for a shunt motor.

b. List four industrial applications for a shunt motor.

6. a. Show with characteristic curves the speed and torque performances for a series motor.

b. List four industrial applications for a series motor.

7. a. Show with characteristic curves the speed and torque performance for a cumulative compound motor.

b. List four industrial applications for a cumulative compound motor.

8. A shunt motor is required to carry an additional load. List the sequence of steps showing how this motor adjusts itself to carry the additional load.

9. The armature of a DC shunt motor carries 15 amperes. The resistance of the armature circuit is

0.7 ohm. The line voltage is 220 volts.

a. Find the counter-emf generated in the armature.

b. Find the power output in watts.

c. Find the power output in horsepower.

10. A 3-horsepower, 120-volt shunt motor takes 23 amperes at full load and 3 amperes at no load. Shunt resistance is 150 ohms; armature resistance is 0.25 ohm; and no-load speed is 1,600 rpm. Find

a. Counter-emf at no load

b. Counter-emf at full load

c. Full-load speed

d. Percentage speed regulation

11. Explain the meaning of the following terms:

a. Speed regulation

b. Speed control

12. Explain what happens under each of the following conditions:

a. The load is removed from a series motor.

b. Resistance is added to the armature circuit of a shunt motor.

c. The rheostat in series with the shunt field of a shunt motor operating at no load becomes open-circuited.

d. The field rheostat in series with the shunt field of a shunt motor is adjusted so that all the resistance of the rheostat is cut out and the shunt field current increases.

13. a. Itemize the losses that reduce the efficiency of a motor, and state in what parts of the motor each loss occurs.

b. State which of these losses are constant and independent of the load.

c. When the constant losses are groups together, what term is used?

14. A motor with an input of 1,000 watts delivers an output of 1 horsepower. If the copper losses are 134 watts, what are the constant or fixed losses, which are independent of the load?

15. A 50-horsepower, 220-volt shunt motor has a full-load efficiency of 83%. Field resistance is 110 ohms; armature resistance is 0.08 ohm. At full load, determine

a. Total power input in watts

b. Line current

c. Total copper losses

d. Stray power losses

16. A DC shunt motor takes 40 amperes at full load when connected to a 115-volt line. At no load, the motor takes 4.4 amperes. Shunt field resistance is 57.5 ohms; armature circuit resistance is 0.25 ohm; full-load speed is 1,740 rpm.

Find

a. Stray power loss

b. Copper loss at full load

c. Efficiency at full load

d. Horsepower output at full load

17. The generator of a motor–generator set is delivering its full-load output of 10 kilowatts. The generator has an efficiency of 88.5%; the motor operates on a 230-volt line. Determine

a. The output of the motor in horsepower

b. The number of amperes the motor is taking from the line when the generator is delivering at rated load (The overall efficiency of the motor–generator set is 85%.)

18. A motor operating on a 120-volt DC supply drives a direct current generator, which is delivering 1 kilowatt at 240 volts. Under these conditions the motor has 78% efficiency and the generator has 85% efficiency. Determine

a. The output of the motor in horsepower

b. The line current drawn by the motor

19. A 220-volt, 20-horsepower compound motor (long shunt, Figure 21–16A) has an armature resistance of 0.25 ohm, series field resistance of 0.19 ohm, and shunt field resistance of 33 ohms.

a. Calculate the current taken by the motor at the instant of starting if it is connected directly to the 220-volt line.

b. Calculate the current when the motor is running if the armature is developing 184 volts counter-emf.

20. Complete the external and internal connections for the shunt motor in the accompanying sketch for counterclockwise rotation. The interpole field windings are to be a part of the armature circuit, which terminates at the connection points marked A1 and A2. Be sure to have the proper connections for the interpole field windings and the main field windings so that their polarities are correct for counterclockwise rotation.

image

 

Dc motors: speed control of dc motors, reversal of rotation, power losses, permanent-magnet motors and summary of dc motors

21–8 SPEED CONTROL OF DC MOTORS

Not all electric motors are suited to have their speed controlled with smooth acceleration or deceleration. DC motors do have this ability. Speed is easily controlled in shunt motors by placing a rheostat in series with the shunt field, thereby varying the current and, consequently, the flux, as shown in Figure 21–18.

Many students of electricity make the wrong assumption that increased resistance will slow the motor. This is not so; just the opposite will occur. When the resistance is increased, the current and therefore the magnetic flux are decreased; thus, the motor speeds up. This happens because a reduction in flux will reduce the cemf, which in turn increases the armature current. As we have seen earlier, these events lead to increased torque and increased speed. Our shorthand notation would describe this chain of events as follows:

image

Needless to say, the opposite actions occur when the field resistance is decreased.

image

It would also be possible to vary the speed of the motor by adding a rheostat into the armature circuit. This, however, is not a desirable practice because armature circuits generally draw a lot of current and the resulting I2R losses would be prohibitively large. This also results in poorer speed regulation.

The term normal speed refers to the speed of the motor without any speed control mechanism in place and full voltage across the field and armature.

We have already seen that added resistance in the shunt circuit will result in above-normal speed. There are occasions, however, when a motor must be operated at below-normal speed, at which time it becomes necessary to insert resistance into the armature circuit. This may not be a happy solution to the problem, but it surely reduces the speed by decreasing the armature current. In this respect, there is no difference between the shunt motor and the compound motor.

Note: The practical and preferred way to vary the speed of a DC motor is by varying the resistance in the shunt field circuit.

Unfortunately, like everything else in life, this method presents us with mixed blessings. In other words, controlling speed by varying the field’s magnetic strength has some drawbacks, too. With the reduction of magnetic flux, there is a corresponding reduction in the production of torque. This means that a desired speed increase brings with it a reduction in torque.

In this respect, armature control appears to be superior. In order to speed up the motor, we would increase the current through the armature (by varying a rheostat). The motor reacts to limit the current increase by speeding up and producing more counter-emf. Since the strength of the magnetic field remains unchanged, the torque will not suffer.

On the other hand, rheostats in the armature circuit would have to be unreason- ably large to handle the armature current. As mentioned before, the resulting I2R losses would be costly, and the efficiency and speed regulation of the motor would suffer. A solution of this dilemma would call for armature control without rheostats. This innovation came about with the introduction of electronic devices known as thyristors.

Electronic Speed Control

The rapid development of solid-state devices during the last few decades has brought about some extraordinary changes in the control of electric power. Semiconductor devices, known as thyristors, can control vast amounts of power with only very small amounts of

image

input power. Such devices have ushered in a new era of industrial electronics, aimed at the control of electrical power and machines.

The silicon-controlled rectifier (SCR) is the most popular device among the thyristors. Thyristors can be defined as electronic switches. The SCR can be switched rapidly, thousands of times per second, without any moving parts. The schematic symbol of the SCR is shown in Figure 21–19, where it is shown connected, like a switch, in series with the armature of a shunt motor. An electrical pulse at the gate will trigger the device into its on position.

You may have already noticed that the DC motor is shown connected to an AC source. In spite of this, the motor does operate on DC. The field receives DC from a bridge rectifier, and the armature receives rectified DC from the SCR. In addition to providing rectification, the SCR controls the average armature voltage and current by pulsing the current through the armature in response to the trigger pulses received by the gate. This action, in turn, controls the speed of the motor. The trigger pulses at the gate are regulated by special electronic circuits, thereby controlling the amount of energy delivered to the motor.

As you progress in your studies of electronics, you will encounter such devices time and again, and you will then have to study their principles of operation. For the time being, it will suffice for you to realize that such electronic devices and techniques have invaded the domain of industrial electricity, and that electronic devices, such as the SCR, will be used increasingly to replace rheostats in the use of motor control.

21–9 REVERSAL OF ROTATION

If you recall that torque in an electric motor depends on the interaction of two magnetic fields, you may easily understand that the direction of rotation depends on the magnetic polarity these fields have with respect to each other.

Figure 21–20 illustrates that the forces of repulsion and attraction can be changed by reversing the polarity of the armature with respect to the polarity of the field coils, and vice versa. This will also explain why it is generally not possible to affect reversal

image

simply by changing the leads of the power source. This technique works only with motors in which the field is provided by permanent magnets, or permanent-magnet (PM) motors. Small, electric toy motors are generally of this kind and can be easily reversed by merely switching the power leads.

By contrast, all motors with electromagnetic fields can be reversed by changing the leads of their field winding. When this is done, the armature leads remain unchanged. Remember, motor reversal is achieved by switching either the field winding or the armature leads, but not both. The wires leading to the armature are generally labeled A1 and A2, and the terminals of the shunt field are marked F1 and F2. Let us assume that a given motor is turning clockwise when its A1 terminal is connected to F1 and A2 is connected to F2; see Figure 21–21A. If it should become necessary to change the direction of rotation, it is only necessary to reconnect the wires A1 to F2 and A2 to F1; see Figure 21–21B.

When compound motors are to be reversed, it is best to switch just the connections

to the armature. If the design of the machine makes it easier to change the field coils, it must be remembered to change both the shunt and the series field. (The terminals of the

image

series fields are labeled S1 and S2.) If only one of the two field windings were switched around, the motor would change its characteristic of a cumulative compound motor to that of a differentially compounded machine, or vice versa.

When frequent reversal of a motor is desired, the installation of a double-pole, double-throw (DPDT) switch will facilitate the task. Figure 21–22 shows how the switch changes the direction of the current through the armature and, consequently, the direction of the motor.

Determining the Direction of Rotation of a DC Motor

The direction of rotation of a DC motor is determined by facing the commutator end of the motor. This is generally the back or rear of the motor. If the windings have been labeled in a standard manner, it is possible to determine the direction of rotation when the motor is connected. Figure 21–23 illustrates the standard connections for a series motor. The standard connections for a shunt motor are illustrated in Figure 21–24, and those for a compound motor in Figure 21–25.

The direction of rotation of a DC motor can be reversed by changing the connections of either the armature or the field leads. It is common practice to change the armature leads, to prevent changing a cumulative compound motor into a differential compound motor. However, if a motor contains only a shunt field, there is no danger of changing the motor from a cumulative to a differential compound motor. Thus the shunt field lead connections are often changed on small motors because the amount of current flow through the field is much less than the current flow through the armature.

Large compound motors often use a control circuit, as shown in Figure 21–26, that uses magnetic contactors to reverse the flow of current through the armature. If we trace the circuit, we see that when the forward or reverse direction is chosen, only the current through the armature changes direction. The current flow through the shunt and series fields remains the same.

image

21–10 POWER LOSSES

Power losses in electric motors are classified, just as they were for generators, as I2R losses and stray power losses. This was explained in Section 19–9, which you may want to review at this time. The drawing used in conjunction with that explanation is similar to Figure 21–27, which illustrates the relationship between useful and useless energies in a motor.

The drawing presents an analogy between a machine and a conduit, both of which have an input on one side and an output on the other. The conduit has some leaks through which various losses are incurred, thereby causing the output to be less than the input. This ratio of output to input is, of course, known as efficiency. This, too, may be reviewed in Section 19–9.

EXAMPLE 21–4

Given: A shunt motor with a 200-ohm field and a 0.4-ohm armature. At no load, the motor takes 3 amperes on a 220-volt line.

Find: The stray power losses.

Solution

image

image

image

21–11 PERMANENT-MAGNET MOTORS

Up to this point we have discussed the three types of DC motors with electromagnetic field coils: shunt, series, and compound motors. These motors have been the traditional workhorses of industry wherever the specifications called for variable load or speed applications (or both).

Naturally, the field coils can be replaced with permanent magnets, thereby creating a permanent-magnet, or PM, motor. For many decades PM motors have had limited applications. They were often used for powering electrical toys and for various applications in automobiles, such as windshield wipers and window lifts. This trend has now been reversed as a consequence of new, sophisticated developments in electronics, as well as improved design of rare-earth and ceramic magnets. As a result, the PM motor has become a favorite in high-technology applications involving motion control, such as robotics.

image

PM motors can be broadly classified as being either

1. Brush-type PM motors (mechanically commutated)

2. Brushless PM motors (electronically commutated)

Of these categories, the brush-type PM motor is the prevalent one, although this trend may change as the cost of electronic commutation circuits further decreases.

Brush-Type PM Motors

As previously stated, the key feature that distinguishes the PM motor from a shunt motor is the replacement of the shunt field winding with permanent magnets.

Figure 21–28 is meant to convey the idea that for any given horsepower rating the PM motor can be made much smaller in size and weight. This is one of the advantages of PM motors, which derives from the fact that heat losses of the field coils have been eliminated, lessening the need for ventilation. The reduction of electrical losses also makes the PM motor somewhat more energy efficient.

The brush-type PM motor uses the same commutation arrangement you have come to know in conventional wire-wound field motors. In other words, current is carried to the armature by a pair of spring- loaded carbon brushes that ride on the commutator. Recall that if the armature had a single winding only, it would rotate only until the magnetic fields reach an equilibrium position. To achieve continuous motion, the armature has multiple windings, which are sequentially energized and de-energized through the brush and commutator assembly. Thus a nearly constant force of magnetic attraction and repulsion between the armature and the field sustains the rotary motion and torque output.

You will remember that motor performance is described in terms of rotational speed and torque output. The horsepower output derived from a motor is directly proportional to the product of speed and torque, or, mathematically speaking:

Php = N x Torque x rpm

Compare this with the equation shown under the heading “Calculation of Horsepower” in Chapter 20, which has been simplified here to show that the torque output is expected to increase whenever speed decreases.

image

This expectation is more fully realized with permanent-magnet motors than with electro- magnetic motors (those with field windings). PM motors are said to have a more linear speed–torque characteristic. This is shown by comparison of Figures 21–29A and 21–29B. The linear characteristic of the PM motors occurs because armature reaction within them is virtually eliminated. This makes for predictable performance in high-technology

applications such as robotics, where precise motion control is very important.

Brushless PM Motors

Advanced electronic technology gave rise to the development of the brushless PM motor, in which the conventional commutator and brush assembly is replaced by a complex electronic commutation system. This calls for radical design changes. The armature and the PM field have their positions interchanged. That is to say, the armature winding is no longer rotating, but is mounted within the outer frame structure, and is now called the stator. Consequently, the permanent magnets are mounted on the revolving structure of the motor, which is now referred to as the rotor, as shown in Figure 21–30.

The coils of the stationary armature, or stator, are generally arranged in a three-phase configuration. The term three-phase is generally associated with alternating current (AC) and implies the use of three-coil windings as shown in Figure 21–31.

Recall that in conventional motors the armature windings are sequentially turned on and off by making or breaking contact with pairs of commutator segments, thereby assuring the correct relationship between the field flux and the armature flux. In a brushless motor, this critical relationship is maintained by electronic sensors that monitor the position of the revolving PM field with respect to the stationary armature. They generate a feedback signal that

image

is applied to appropriate control circuits, which then deliver current sequentially to the stationary armature. A nearly constant spatial relationship is maintained between the magnetic fields of the stator and the rotor, thereby developing the desired torque; see Figure 21–32.

The operating characteristics of brushless PM motors are similar to those of brush-type PM motors. That is to say, they have a high starting torque and maintain a linear torque-to- speed relationship over their full range of operation.

It is noteworthy that the maximum torque obtainable from a DC motor is limited by commutation rather than by heating. If the armature current becomes excessive, severe arcing may ruin the brushes and commutator. In spite of this limitation, brush-type PM motors are more widely sold than brushless PM motors, mainly because of their lower cost.

image

However, brushless PM motors have become very popular for variable-speed applications such as air handlers found in the air-conditioning field. The speed of the brush- less PM motor can be controlled by changing the frequency of the three-phase power applied to the stator field. The electronic controls necessary for making this conversion are generally located inside the motor housing, as shown in Figure 21–33.

As stated earlier, these desirable characteristics make PM motors strong contenders in the market for fractional horsepower motors that provide precise motion control.

image

SUMMARY

• The left-hand rule applies to generators, while the right-hand rule applies to motors.

• Torque is proportional to flux and armature current. Increase of either increases torque.

• Counter-emf is proportional to flux and rpm. Increase of either increases emf.

• The amount of counter-emf determines the useful mechanical output from the motor.

• Armature windings of motors are similar to those of generators. Lap windings are suit- able for high-current applications, while wave windings sacrifice current for high- voltage applications.

• In motors, the interpoles have the same polarity as the main pole directly in back of them (with respect to the direction of rotation). This is opposite to the placement of interpoles in generators.

• The shunt motor has its field coils in parallel with the armature. Its constant field strength limits input current and speed at no load.

• A shunt motor accelerates to excessive speeds when the shunt field is lost.

• The series motor has its field coil in series with the armature. At no load, reduced field permits enough current to produce torque that accelerates the motor greatly. At heavy load, the torque is high, the speed is low.

• A series motor accelerates to excessive speeds when the load is lost.

• When the advantages of series and shunt motors are compared, it is seen that the shunt motor has the more constant speed, but a series motor of the same horsepower rating can exert a much greater torque, when necessary, without a large increase in current.

• Compound motors have both series and shunt fields. The relative ampere-turns of the two fields determine the speed and torque characteristics of the motor.

• Generally, compound motors are cumulatively compounded and long-shunt connected.

• Weakening the field speeds up the shunt motor; reduced armature current slows the shunt motor.

• Speed control can be achieved by either changing the current in the field or in the armature.

• When rheostats are used for speed control, the preferred placement of the rheostat is in the shunt field circuit.

• Armature control is the preferred method when electronic components are used to vary the speed.

Achievement Review

1. An armature, resistance 0.47 ohm, is supplied with 124 volts DC and 40 amperes. Calculate

a. The volts used to overcome the resistance of the armature

b. The volts used to make mechanical energy (counter-emf)

c. The horsepower output

d. The efficiency

e. The watts heating rate

2. Calculate the current in the armature of question 1 if the armature stalled because of overload.

3. Determine the direction of the rotation of the armatures shown in Figures 21–4 and 21–7.

4. What is the polarity of interpoles in reference to the polarity of main field poles in a direct current motor?

5. a. Show with characteristic curves the speed and torque performance for a shunt motor.

b. List four industrial applications for a shunt motor.

6. a. Show with characteristic curves the speed and torque performances for a series motor.

b. List four industrial applications for a series motor.

7. a. Show with characteristic curves the speed and torque performance for a cumulative compound motor.

b. List four industrial applications for a cumulative compound motor.

8. A shunt motor is required to carry an additional load. List the sequence of steps showing how this motor adjusts itself to carry the additional load.

9. The armature of a DC shunt motor carries 15 amperes. The resistance of the armature circuit is

0.7 ohm. The line voltage is 220 volts.

a. Find the counter-emf generated in the armature.

b. Find the power output in watts.

c. Find the power output in horsepower.

10. A 3-horsepower, 120-volt shunt motor takes 23 amperes at full load and 3 amperes at no load. Shunt resistance is 150 ohms; armature resistance is 0.25 ohm; and no-load speed is 1,600 rpm. Find

a. Counter-emf at no load

b. Counter-emf at full load

c. Full-load speed

d. Percentage speed regulation

11. Explain the meaning of the following terms:

a. Speed regulation

b. Speed control

12. Explain what happens under each of the following conditions:

a. The load is removed from a series motor.

b. Resistance is added to the armature circuit of a shunt motor.

c. The rheostat in series with the shunt field of a shunt motor operating at no load becomes open-circuited.

d. The field rheostat in series with the shunt field of a shunt motor is adjusted so that all the resistance of the rheostat is cut out and the shunt field current increases.

13. a. Itemize the losses that reduce the efficiency of a motor, and state in what parts of the motor each loss occurs.

b. State which of these losses are constant and independent of the load.

c. When the constant losses are groups together, what term is used?

14. A motor with an input of 1,000 watts delivers an output of 1 horsepower. If the copper losses are 134 watts, what are the constant or fixed losses, which are independent of the load?

15. A 50-horsepower, 220-volt shunt motor has a full-load efficiency of 83%. Field resistance is 110 ohms; armature resistance is 0.08 ohm. At full load, determine

a. Total power input in watts

b. Line current

c. Total copper losses

d. Stray power losses

16. A DC shunt motor takes 40 amperes at full load when connected to a 115-volt line. At no load, the motor takes 4.4 amperes. Shunt field resistance is 57.5 ohms; armature circuit resistance is 0.25 ohm; full-load speed is 1,740 rpm.

Find

a. Stray power loss

b. Copper loss at full load

c. Efficiency at full load

d. Horsepower output at full load

17. The generator of a motor–generator set is delivering its full-load output of 10 kilowatts. The generator has an efficiency of 88.5%; the motor operates on a 230-volt line. Determine

a. The output of the motor in horsepower

b. The number of amperes the motor is taking from the line when the generator is delivering at rated load (The overall efficiency of the motor–generator set is 85%.)

18. A motor operating on a 120-volt DC supply drives a direct current generator, which is delivering 1 kilowatt at 240 volts. Under these conditions the motor has 78% efficiency and the generator has 85% efficiency. Determine

a. The output of the motor in horsepower

b. The line current drawn by the motor

19. A 220-volt, 20-horsepower compound motor (long shunt, Figure 21–16A) has an armature resistance of 0.25 ohm, series field resistance of 0.19 ohm, and shunt field resistance of 33 ohms.

a. Calculate the current taken by the motor at the instant of starting if it is connected directly to the 220-volt line.

b. Calculate the current when the motor is running if the armature is developing 184 volts counter-emf.

20. Complete the external and internal connections for the shunt motor in the accompanying sketch for counterclockwise rotation. The interpole field windings are to be a part of the armature circuit, which terminates at the connection points marked A1 and A2. Be sure to have the proper connections for the interpole field windings and the main field windings so that their polarities are correct for counterclockwise rotation.

image

 

Starters and speed controllers : starters for series motors, drum controllers and magnetic controllers.

22–5 STARTERS FOR SERIES MOTORS

Series motors require a special type of manual starting rheostat called a series motor starter. These starting rheostats serve the same purpose as the three- and four- terminal manual starting rheostats used with shunt and compound motors, which is to limit the surge of starting current and to accelerate the motor in one direction of rotation. However, series motor starters have different internal and external connections. There are two types of series motor starters, one with no-voltage protection and the other with no-load protection.

A series motor starter with no-voltage protection is illustrated in Figure 22–8. The holding coil is connected across the source voltage. This starter is used to accelerate the motor to rated speed. In case of voltage failure, the holding coil no longer acts as an electromagnet. The spring reset then quickly returns the arm to the off position to protect the motor from damage.

The series motor starter shown in Figure 22–9 has no-load protection. The holding coil is in series with the armature. Because of the large current in the armature circuit, the holding coil consists of only a few turns of heavy wire.

The same care is used in starting a motor with this type of starting rheostat as is used with three- and four-terminal starting rheostats. The arm is slowly moved from the off position to the on position, pausing on each contact button for a period of one to two seconds. The arm is held against the tension of the reset spring by means of the holding coil connected in series with the armature. If the load current to the motor drops to a low value, the holding coil weakens and the reset spring returns the arm to the off position.

image

This is an important protective feature. A series motor can reach a dangerously high speed at light loads; this type of starting rheostat protects the motor from damage caused by excessive speeds.

22–6 DRUM CONTROLLERS

Series and cumulative compound motors are often used on cranes, elevators, machine tools, and other devices where the motor is under the direct control of an operator and where frequent starting, varying speed, stopping, and reversing are necessary. A manually operated controller that is more rugged than a starting rheostat is used in these applications. This starting rheostat is called a drum controller.

A typical drum controller is illustrated in Figure 22–10. Inside the switch is a series of contacts mounted on a movable cylinder. These contacts, insulated from the cylinder and from each other, are the movable contacts. There is another series of contacts, located inside the controller, called stationary contacts. These contacts are arranged to make contact with the movable contacts as the cylinder is rotated. On top of the drum

image

controller is a handle that is keyed to the shaft for the movable cylinder and contacts. This handle can be moved in either a clockwise or a counterclockwise direction, providing a range of speed control in either direction or rotation. Once set, a roller and notched- wheel arrangement keeps the cylinder and movable contacts stationary until the handle is turned by the operator.

A schematic of a drum controller having two steps of resistance is shown in Figure 22–11. In this wiring diagram, the contacts are shown in a flat position to make it easier to trace connections. For operating in the forward direction, the movable contacts on the right connect with the center stationary contacts. For operation in the reverse direction, the movable contacts on the left touch the stationary contacts in the center.

There are three forward positions and three reverse positions in which the controller handle can be set. In the first forward position, all resistance is in series with the armature. The circuit for the first forward position is traced as follows:

1. Movable fingers A, B, C, and D contact the stationary contacts 7, 5, 4, and 3.

2. The current path is from 7 to A, from A to B, from B to 5, and then to armature terminal A1.

image

3. From A1, the current path is through the armature winding to terminal A2, then to stationary contact 6, and then to stationary contact 4.

4. From contact 4, the current path is to contact C, to D, and then to 3.

5. From 3, the current path is through the entire armature resistor, through the series field, and then back to the line.

In the second forward position, part of the resistance is cut out by the connection from D to E. The third forward position bypasses all resistance and puts the armature circuit directly across the source voltage.

In the first reverse position, all resistance is again inserted in series with the armature. Figure 22–12 illustrates the first position of the controller for the reverse direction.

The current in the armature circuit is reversed. However, the current direction in the shunt and series fields is the same as for the forward direction. As shown earlier, changing the direction of the current in only the armature changes the direction of rotation. In the second position, part of the resistance circuit is cut out. The third reverse position cuts out all resistance and puts the armature circuit directly across line voltage.

There are more elaborate drum controllers with more positions and a greater control of speed. However, they all use practically the same circuit arrangement.

image

22–7 MAGNETIC CONTROLLERS

The manual starters and controllers described in the foregoing sections have been increasingly replaced by magnetic starters with push-button or automatic control. This type of equipment is convenient and has the added advantage of reducing damage caused by human misjudgment. Many of these automatic systems control DC motors with wide speed range and excellent torque characteristics.

The type of schematic diagram used to describe motor-control circuitry is often referred to as a ladder diagram or relay ladder logic. The word ladder is derived from the fact that all control components are arranged like the rungs of a ladder between two vertical lines that represent the control voltage.

Standard symbols have been established for control circuit components, such as: relay coils, contactors, push-button stations, overload devices, and limit switches. Such symbols, often known as JIC (or Joint Industrial Council) standards, conform to standards established by the National Electrical Manufacturers’ Association; see Figure A–12.

The following sections will serve as an introduction to the concept of automatic control of DC motors.

A contactor operated by a relay is an important part of any automatic motor controller. A contactor is a switch that is closed or opened by the magnetic pull of an energized relay coil. Figure 22–13 shows a relay coil with contactors. A relay coil connected in series in the circuit is normally represented by a heavy line, as shown in Figure 22–14. A relay coil connected in parallel is represented by a light line. A contactor that is open when the coil is de-energized is known as a normally open (N.O.) contactor and is indicated by two short parallel lines; see Figure 22–14. A contactor that is closed when the coil is de-energized is known as normally closed (N.C.) and is indicated by a diagonal line drawn across two parallel lines; see Figure 22–14. Letters are added to show which contacts are operated by a given coil.

When contactors interrupt a large current, a severe arc forms. This arc can burn the surface of the contactor. To reduce this burning effect, a magnetic blowout coil is added in series with the contactors to extinguish the arc by electromagnetic action, as shown in Figure 22–15. An arc is, after all, nothing but a stream of electrically charged particles (similar to current in a wire) and, therefore, can be deflected by a magnetic field. Figure 22–15 shows how the blowout coil sets up a magnetic field that serves to force the arc off the contacts by deflecting it. An arc chute is provided for the protection of sur- rounding equipment. Figure 22–16 shows a typical relay so equipped, and Figure 22–17 represents its corresponding schematic.

image

image

image

Some relay coils used in DC circuits have tapped-coil arrangements to limit the continuous holding current and prevent overheating of the coil. These arrangements work because it takes less energy to hold the energized plunger in place after it has been pulled up to its closed position.

Consider the coil, with dual windings, shown in Figure 22–18A. Both coils are required to provide sufficient pull-in power. But once the relay plunger has activated, a timer (or similar) contact will disconnect one of the coil sections, reducing current to an appropriate “hold” value.

A different technique can be used to achieve the same result. Instead of a dual- winding coil, a single-coil relay is used, with a current-limiting resistor that is connected in series with it as soon as the coil is energized. This is illustrated in Figure 22–18B, where control relay CR provides a normally closed contact to insert its own current- limiting resistor in series.

Push-button stations, like the ones shown in Figure 22–19, are used to provide control of the motor. The push buttons are really spring-controlled switches, which are classified as being either normally open or normally closed (N.O. or N.C.).

Pressure on a normally open start button closes the switch contacts momentarily. When the button is released, the spring reopens the switch, as shown in Figure 22–20A. By contrast, a stop button is a normally closed switch. Finger pressure opens the contacts, which close again when pressure is released; see Figure 22–20B. Many push buttons have

image

image

two sets of momentary contacts, Figure 22–20C, one of which opens when the other set is closed.

These push buttons generally are used in connection with a relay coil, as shown in Figure 22–21. This diagram represents part of an elementary control circuit. When the start button is pressed, closing contacts 2–3, there is a circuit from line L1 through normally closed contacts 1–2, through 2–3, and through relay coil M to supply line L2. The current in relay coil M causes contact M to be held closed. Hence, when the start button is released (opening contacts 2–3), there is still a circuit through the stop button 1–2, through contact M, and through coil M to L2. This arrangement is called a sealing circuit and is a part of the control circuits soon to be described. Momentary pressure on the start button energizes the relay coil. The sealing contact M keeps the coil energized. In control circuits, coil M also closes other contactors as well as the sealing contact.

When the stop button 1–2 is momentarily pressed, the circuit is broken. Coil M loses its magnetic pull and contact M opens. The release of the stop button (closing 1–2)

image

does not reestablish the circuit. Both contact M and start button 2–3 are open. Consequently, coil M cannot be energized until the start button again closes the circuit.

There are so many types of automatic controllers for special applications that it is impossible to cover all of them in this chapter. Instead, we describe three standard types in some detail: the counter-electromotive force controller, the voltage drop acceleration controller, and the definite time controller.

 

Starters and speed controllers : starters for series motors, drum controllers and magnetic controllers.

22–5 STARTERS FOR SERIES MOTORS

Series motors require a special type of manual starting rheostat called a series motor starter. These starting rheostats serve the same purpose as the three- and four- terminal manual starting rheostats used with shunt and compound motors, which is to limit the surge of starting current and to accelerate the motor in one direction of rotation. However, series motor starters have different internal and external connections. There are two types of series motor starters, one with no-voltage protection and the other with no-load protection.

A series motor starter with no-voltage protection is illustrated in Figure 22–8. The holding coil is connected across the source voltage. This starter is used to accelerate the motor to rated speed. In case of voltage failure, the holding coil no longer acts as an electromagnet. The spring reset then quickly returns the arm to the off position to protect the motor from damage.

The series motor starter shown in Figure 22–9 has no-load protection. The holding coil is in series with the armature. Because of the large current in the armature circuit, the holding coil consists of only a few turns of heavy wire.

The same care is used in starting a motor with this type of starting rheostat as is used with three- and four-terminal starting rheostats. The arm is slowly moved from the off position to the on position, pausing on each contact button for a period of one to two seconds. The arm is held against the tension of the reset spring by means of the holding coil connected in series with the armature. If the load current to the motor drops to a low value, the holding coil weakens and the reset spring returns the arm to the off position.

image

This is an important protective feature. A series motor can reach a dangerously high speed at light loads; this type of starting rheostat protects the motor from damage caused by excessive speeds.

22–6 DRUM CONTROLLERS

Series and cumulative compound motors are often used on cranes, elevators, machine tools, and other devices where the motor is under the direct control of an operator and where frequent starting, varying speed, stopping, and reversing are necessary. A manually operated controller that is more rugged than a starting rheostat is used in these applications. This starting rheostat is called a drum controller.

A typical drum controller is illustrated in Figure 22–10. Inside the switch is a series of contacts mounted on a movable cylinder. These contacts, insulated from the cylinder and from each other, are the movable contacts. There is another series of contacts, located inside the controller, called stationary contacts. These contacts are arranged to make contact with the movable contacts as the cylinder is rotated. On top of the drum

image

controller is a handle that is keyed to the shaft for the movable cylinder and contacts. This handle can be moved in either a clockwise or a counterclockwise direction, providing a range of speed control in either direction or rotation. Once set, a roller and notched- wheel arrangement keeps the cylinder and movable contacts stationary until the handle is turned by the operator.

A schematic of a drum controller having two steps of resistance is shown in Figure 22–11. In this wiring diagram, the contacts are shown in a flat position to make it easier to trace connections. For operating in the forward direction, the movable contacts on the right connect with the center stationary contacts. For operation in the reverse direction, the movable contacts on the left touch the stationary contacts in the center.

There are three forward positions and three reverse positions in which the controller handle can be set. In the first forward position, all resistance is in series with the armature. The circuit for the first forward position is traced as follows:

1. Movable fingers A, B, C, and D contact the stationary contacts 7, 5, 4, and 3.

2. The current path is from 7 to A, from A to B, from B to 5, and then to armature terminal A1.

image

3. From A1, the current path is through the armature winding to terminal A2, then to stationary contact 6, and then to stationary contact 4.

4. From contact 4, the current path is to contact C, to D, and then to 3.

5. From 3, the current path is through the entire armature resistor, through the series field, and then back to the line.

In the second forward position, part of the resistance is cut out by the connection from D to E. The third forward position bypasses all resistance and puts the armature circuit directly across the source voltage.

In the first reverse position, all resistance is again inserted in series with the armature. Figure 22–12 illustrates the first position of the controller for the reverse direction.

The current in the armature circuit is reversed. However, the current direction in the shunt and series fields is the same as for the forward direction. As shown earlier, changing the direction of the current in only the armature changes the direction of rotation. In the second position, part of the resistance circuit is cut out. The third reverse position cuts out all resistance and puts the armature circuit directly across line voltage.

There are more elaborate drum controllers with more positions and a greater control of speed. However, they all use practically the same circuit arrangement.

image

22–7 MAGNETIC CONTROLLERS

The manual starters and controllers described in the foregoing sections have been increasingly replaced by magnetic starters with push-button or automatic control. This type of equipment is convenient and has the added advantage of reducing damage caused by human misjudgment. Many of these automatic systems control DC motors with wide speed range and excellent torque characteristics.

The type of schematic diagram used to describe motor-control circuitry is often referred to as a ladder diagram or relay ladder logic. The word ladder is derived from the fact that all control components are arranged like the rungs of a ladder between two vertical lines that represent the control voltage.

Standard symbols have been established for control circuit components, such as: relay coils, contactors, push-button stations, overload devices, and limit switches. Such symbols, often known as JIC (or Joint Industrial Council) standards, conform to standards established by the National Electrical Manufacturers’ Association; see Figure A–12.

The following sections will serve as an introduction to the concept of automatic control of DC motors.

A contactor operated by a relay is an important part of any automatic motor controller. A contactor is a switch that is closed or opened by the magnetic pull of an energized relay coil. Figure 22–13 shows a relay coil with contactors. A relay coil connected in series in the circuit is normally represented by a heavy line, as shown in Figure 22–14. A relay coil connected in parallel is represented by a light line. A contactor that is open when the coil is de-energized is known as a normally open (N.O.) contactor and is indicated by two short parallel lines; see Figure 22–14. A contactor that is closed when the coil is de-energized is known as normally closed (N.C.) and is indicated by a diagonal line drawn across two parallel lines; see Figure 22–14. Letters are added to show which contacts are operated by a given coil.

When contactors interrupt a large current, a severe arc forms. This arc can burn the surface of the contactor. To reduce this burning effect, a magnetic blowout coil is added in series with the contactors to extinguish the arc by electromagnetic action, as shown in Figure 22–15. An arc is, after all, nothing but a stream of electrically charged particles (similar to current in a wire) and, therefore, can be deflected by a magnetic field. Figure 22–15 shows how the blowout coil sets up a magnetic field that serves to force the arc off the contacts by deflecting it. An arc chute is provided for the protection of sur- rounding equipment. Figure 22–16 shows a typical relay so equipped, and Figure 22–17 represents its corresponding schematic.

image

image

image

Some relay coils used in DC circuits have tapped-coil arrangements to limit the continuous holding current and prevent overheating of the coil. These arrangements work because it takes less energy to hold the energized plunger in place after it has been pulled up to its closed position.

Consider the coil, with dual windings, shown in Figure 22–18A. Both coils are required to provide sufficient pull-in power. But once the relay plunger has activated, a timer (or similar) contact will disconnect one of the coil sections, reducing current to an appropriate “hold” value.

A different technique can be used to achieve the same result. Instead of a dual- winding coil, a single-coil relay is used, with a current-limiting resistor that is connected in series with it as soon as the coil is energized. This is illustrated in Figure 22–18B, where control relay CR provides a normally closed contact to insert its own current- limiting resistor in series.

Push-button stations, like the ones shown in Figure 22–19, are used to provide control of the motor. The push buttons are really spring-controlled switches, which are classified as being either normally open or normally closed (N.O. or N.C.).

Pressure on a normally open start button closes the switch contacts momentarily. When the button is released, the spring reopens the switch, as shown in Figure 22–20A. By contrast, a stop button is a normally closed switch. Finger pressure opens the contacts, which close again when pressure is released; see Figure 22–20B. Many push buttons have

image

image

two sets of momentary contacts, Figure 22–20C, one of which opens when the other set is closed.

These push buttons generally are used in connection with a relay coil, as shown in Figure 22–21. This diagram represents part of an elementary control circuit. When the start button is pressed, closing contacts 2–3, there is a circuit from line L1 through normally closed contacts 1–2, through 2–3, and through relay coil M to supply line L2. The current in relay coil M causes contact M to be held closed. Hence, when the start button is released (opening contacts 2–3), there is still a circuit through the stop button 1–2, through contact M, and through coil M to L2. This arrangement is called a sealing circuit and is a part of the control circuits soon to be described. Momentary pressure on the start button energizes the relay coil. The sealing contact M keeps the coil energized. In control circuits, coil M also closes other contactors as well as the sealing contact.

When the stop button 1–2 is momentarily pressed, the circuit is broken. Coil M loses its magnetic pull and contact M opens. The release of the stop button (closing 1–2)

image

does not reestablish the circuit. Both contact M and start button 2–3 are open. Consequently, coil M cannot be energized until the start button again closes the circuit.

There are so many types of automatic controllers for special applications that it is impossible to cover all of them in this chapter. Instead, we describe three standard types in some detail: the counter-electromotive force controller, the voltage drop acceleration controller, and the definite time controller.

 

Starters and speed controllers : trends in motor control, the need for reduced-voltage starting, manual starters and manual speed controllers.

Starters and Speed Controllers
22–1 TRENDS IN MOTOR CONTROL

Until recently, DC motors have been the only choice for applications where accurate control over wide speed ranges and load positioning were required. To satisfy these demands, industry developed a great variety of controllers. In the infancy of motor technology, manual control boxes were built. Later designs incorporated semiautomatic features that gave rise to fully automatic controls.

Historically, such control circuits were based on extensive use of electromagnetic relays. Their schematics came to be known as ladder diagrams, with their vertical lines interconnected with horizontal “rungs,” resembling a ladder.

In recent decades, the innovations of electronic logic and computer circuitry brought about the development of electronic speed controls. The quick proliferation of programmable controllers (PCs) foreshadows the obsolescence of magnetic relay circuits. However, there remains a multitude of such “old-fashioned” equipment in use, and you are advised to study the sections of this book that cover relay ladder logic. They teach important principles that will carry over into future studies of modern electronic control circuitry.

22–2 THE NEED FOR REDUCED-VOLTAGE STARTING

For starting small DC motors (up to 2 horsepower), the motor is simply connected directly to the DC power line. But the sudden connection of a large motor to a DC line would cause unreasonably high current in the line and armature, since, at the moment of starting, no counter-emf exists to limit the current.

For example, in question 19 in Chapter 21, the armature and series field have a total resistance of 0.44 ohm. With no opposing emf at the instant of starting, the armature current is 220/0.44 5 500 amperes. Without the addition of external resistance, this high current puts a great stress on armature windings, burns brushes and commutators, and causes line voltage drop, which can interfere with other machines on the line.

For the gentle starting of large motors, a motor starter is used. It is merely a vari- able resistance placed in series with the armature. Its primary purpose is to limit the armature current to a safe value during the starting and accelerating period. Along with the starting rheostat, there is usually some arrangement for automatically disconnecting the motor (and leaving it disconnected) if the line voltage fails.

The two common types of manual starting rheostats, or starting boxes, used with shunt and compound motors are the three-terminal and four-terminal starting rheostats.

22–3 MANUAL STARTERS

Three-Terminal Starting Rheostat

The three-terminal starting rheostat, shown in Figure 22–1, has a tapped resistor enclosed in a ventilated box. Contact buttons, located on a slate panel mounted on the front of the box, are connected to the tapped resistor. A movable arm K with a spring reset can be moved over the contact buttons to cut out sections of the tapped resistor.

image

After the line switch is closed, the arm K is moved to the first contact, A. The shunt field is now connected to the line at full strength. All of the starting resistance is in series with the armature. This resistance, in accepted practice, is calculated to limit the starting current to 150% of the full-load current rating of the motor.

As the motor speeds up, the operator moves the arm gradually toward contact B. The time required depends on the time needed for the machine to build up speed. At B, the armature is connected directly across the source voltage. The magnetic holding coil, M, holds the arm in the full on position. A spring (not shown) tends to return the arm to the off position. If the shunt field current is much reduced while the armature circuit remains connected, the motor races. However, shunt field current reduction is prevented by having the holding coil in series with the shunt field. Reduced current in the holding coil lets the arm fly back to the off position. This protective feature that a three-termi- nal starter provides is called no-field release. The holding coil also releases the arm if the line voltage is interrupted. The motor then has to be restarted when line voltage is restored.

The starting resistance is in series with the shunt field when the arm K is in the on position, at contact B. This additional resistance is so small, when compared with the field resistance, that it has practically no effect on field strength and speed.

Figure 22–2 illustrates the connections for a three-terminal manual starting rheostat used with a cumulative compound motor. Note that the only difference in this circuit and the connections for a shunt motor is the addition of the series field.

Starting rheostats are designed to carry the starting current for only a short time; they are not intended for speed control. An attempt to obtain below-normal speed by holding the arm K on an intermediate contact is likely to burn out the starting resistor.

image

The three-terminal starting box is not suited for use where a field rheostat is used to obtain above-normal speeds. The reason is that a reduced field current can release the arm and shut down the motor. With field control, a slightly different arrangement, called a four-terminal starting box, is used.

Four -Terminal Starting Rheostat

Four-terminal manual starting rheostat has two functions in common with three- terminal starting rheostats: (1) to accelerate a motor to rated speed in one direction of rotation and (2) to limit the starting surge of current in the armature to a safe value. However, this starting rheostat can be used along with a field rheostat. The field control is used to obtain above-normal speeds. Figure 22–3 represents a four-terminal starting box connected to a shunt motor.

Note that the holding coil is not connected in series with the shunt field, as it is in the three-terminal starting box. In this four-terminal starter, the holding coil, in series with a resistor, is connected directly across the source voltage. The holding-coil current is independent of field current but still serves as a no-voltage release. If line voltage drops, the attraction of the holding coil is decreased, and a reset spring (not shown) returns the movable arm to the off position.

A motor with a four-terminal starter is started in the same manner as with a three- terminal starter. Any desired above-normal speed of the motor is obtained by adjustment of the field rheostat in series with the shunt field.

When the motor is to be stopped, all resistance in the field rheostat should be cut out, so that motor speed decreases to its normal value. Then the line switch should be opened. This procedure ensures that the next time the motor is started, it has a strong field and resultant strong starting torque.

image

22–4 MANUAL SPEED CONTROLLERS

It is often necessary to vary the speed of DC motors. As pointed out in Section 21–8, above-normal rating speeds are obtained by adding resistance to the shunt field circuit. Below-normal rating speeds are obtained by adding resistance to the armature circuit.

Two types of manual speed controllers are used with shunt and cumulative compound motors, above-normal speed controllers and above-and-below-normal speed controllers.

The National Electrical Manufacturers’ Association (NEMA) defines a manual speed controller as a device for accelerating a motor to normal speed with the additional function of varying speed. (Manual speed controllers must not be confused with manual starting rheostats, which simply accelerate a motor to normal speed.)

Above-Normal Speed Controller

This controller combines the functions of a starter and a field rheostat. The starting resistance is used in the armature circuit only during the starting period. This limits the armature current while the motor accelerates to normal speed. The field control circuit is effective only after the motor is brought up to normal speed. After normal speed, insertion of resistance weakens the field and produces higher speed. The controller illustrated in Figure 22–4, then, has three functions.

1. To accelerate the motor to rated speed by reducing the resistance in the armature circuit

image

2. To limit the current surge in the armature circuit to a safe value

3. To obtain above-normal speed control by varying the resistance in series with the shunt field

Two rows of contacts are mounted on a slate panel, as shown in Figure 22–4. The top row of small contact buttons connects to a tapped resistor, which is the field rheostat. The bottom row of larger contacts connects to a tapped resistor in series with the armature. The control arm K connects to both sets of contacts.

In the start position, arm B bypasses the field rheostat; thus, the full-line voltage is applied to the shunt field. Arm K, when moved clockwise, cuts out starting resistance as the motor accelerates. When arm K approaches the normal-run position, pin C pushes arm B counterclockwise until it is secured against the holding coil. The motor is now accelerated to normal speed.

In Figure 22–5 note that arm B is removed from the field circuit; thus, it no longer short circuits the field rheostat. Instead, arm B now bypasses the starting resistance, providing a direct path from the supply line to the armature.

If it is necessary to increase the speed of the motor to some value above normal, arm K is moved counterclockwise. This has no effect now on armature current, but it

image

does result in resistance being inserted in the shunt field circuit. Motor speed now in- creases. Arm K can be left in any intermediate position to obtain desired above-normal speed.

When the line switch is opened, the holding coil releases arm B, which is returned to its original on position by a spring. Pin C is now released and permits arm K to return to the off position. K is returned by a reset spring.

This type of controller can be used with either a shunt or a compound motor.

Above-and-Below-Normal Speed Controller

In some motor installations it is necessary to have a wide range of speed control, including both above-normal and below-normal speeds. A typical above-and-below- normal controller is illustrated in Figures 22–6 and 22–7. The movable arm K connects to two rows of contacts. The lower row of contacts connects to taps on the armature circuit resistor, and the upper row connects to taps on the field resistor. The contacts are mounted on the front of a slate panel, while the armature and field resistors are housed in a ventilated box in back of the panel. Continued clockwise movement of the arm results in continued increase of speed. This increase is accomplished first by removing armature circuit resistance and then by inserting resistance in the field circuit.

In the position shown in Figure 22–6, there is considerable resistance in series with the armature. The arm K also contacts the radial conductor D, which connects full-line

image

voltage to the shunt field. With the arm in this position, the speed is below normal. Once the movable arm is set on any contact point, it locks in that position until moved to some other point. This is done by a unique gear-and-latch system operated with the aid of the holding coil.

When a motor is operating under heavy load at slow speed, there is considerable current in the armature circuit. This large current requires the armature resistors to be of large size in order to radiate the heat produced by the large current. Large resistors make the physical size of this controller larger, for a given horsepower rating, than an ordinary manual starting rheostat.

As the arm is slowly moved clockwise to the upper end of the armature rheostat, it still contacts conductor D (at point B). The arm K also comes in contact with the curved conducting strip marked A. This is the normal speed position. Full-line voltage is applied to both the armature and the shunt field.

In the above-normal speed position, full-line voltage is still applied to the armature through strip A–E. The outer end of the control arm K now contacts a point on the field rheostat; thus, the resistance between the arm and point B is inserted into the field circuit. If the arm is moved to point C, all of the field rheostat is in use, producing maximum speed by field weakening. When the line switch is opened, the holding coil releases the latch, and the reset spring returns the arm to the off position.

This type of controller can be used with either a shunt or a compound motor. Connections for a shunt motor differ only by the omission of the series field.

 

Starters and speed controllers : trends in motor control, the need for reduced-voltage starting, manual starters and manual speed controllers.

Starters and Speed Controllers
22–1 TRENDS IN MOTOR CONTROL

Until recently, DC motors have been the only choice for applications where accurate control over wide speed ranges and load positioning were required. To satisfy these demands, industry developed a great variety of controllers. In the infancy of motor technology, manual control boxes were built. Later designs incorporated semiautomatic features that gave rise to fully automatic controls.

Historically, such control circuits were based on extensive use of electromagnetic relays. Their schematics came to be known as ladder diagrams, with their vertical lines interconnected with horizontal “rungs,” resembling a ladder.

In recent decades, the innovations of electronic logic and computer circuitry brought about the development of electronic speed controls. The quick proliferation of programmable controllers (PCs) foreshadows the obsolescence of magnetic relay circuits. However, there remains a multitude of such “old-fashioned” equipment in use, and you are advised to study the sections of this book that cover relay ladder logic. They teach important principles that will carry over into future studies of modern electronic control circuitry.

22–2 THE NEED FOR REDUCED-VOLTAGE STARTING

For starting small DC motors (up to 2 horsepower), the motor is simply connected directly to the DC power line. But the sudden connection of a large motor to a DC line would cause unreasonably high current in the line and armature, since, at the moment of starting, no counter-emf exists to limit the current.

For example, in question 19 in Chapter 21, the armature and series field have a total resistance of 0.44 ohm. With no opposing emf at the instant of starting, the armature current is 220/0.44 5 500 amperes. Without the addition of external resistance, this high current puts a great stress on armature windings, burns brushes and commutators, and causes line voltage drop, which can interfere with other machines on the line.

For the gentle starting of large motors, a motor starter is used. It is merely a vari- able resistance placed in series with the armature. Its primary purpose is to limit the armature current to a safe value during the starting and accelerating period. Along with the starting rheostat, there is usually some arrangement for automatically disconnecting the motor (and leaving it disconnected) if the line voltage fails.

The two common types of manual starting rheostats, or starting boxes, used with shunt and compound motors are the three-terminal and four-terminal starting rheostats.

22–3 MANUAL STARTERS

Three-Terminal Starting Rheostat

The three-terminal starting rheostat, shown in Figure 22–1, has a tapped resistor enclosed in a ventilated box. Contact buttons, located on a slate panel mounted on the front of the box, are connected to the tapped resistor. A movable arm K with a spring reset can be moved over the contact buttons to cut out sections of the tapped resistor.

image

After the line switch is closed, the arm K is moved to the first contact, A. The shunt field is now connected to the line at full strength. All of the starting resistance is in series with the armature. This resistance, in accepted practice, is calculated to limit the starting current to 150% of the full-load current rating of the motor.

As the motor speeds up, the operator moves the arm gradually toward contact B. The time required depends on the time needed for the machine to build up speed. At B, the armature is connected directly across the source voltage. The magnetic holding coil, M, holds the arm in the full on position. A spring (not shown) tends to return the arm to the off position. If the shunt field current is much reduced while the armature circuit remains connected, the motor races. However, shunt field current reduction is prevented by having the holding coil in series with the shunt field. Reduced current in the holding coil lets the arm fly back to the off position. This protective feature that a three-termi- nal starter provides is called no-field release. The holding coil also releases the arm if the line voltage is interrupted. The motor then has to be restarted when line voltage is restored.

The starting resistance is in series with the shunt field when the arm K is in the on position, at contact B. This additional resistance is so small, when compared with the field resistance, that it has practically no effect on field strength and speed.

Figure 22–2 illustrates the connections for a three-terminal manual starting rheostat used with a cumulative compound motor. Note that the only difference in this circuit and the connections for a shunt motor is the addition of the series field.

Starting rheostats are designed to carry the starting current for only a short time; they are not intended for speed control. An attempt to obtain below-normal speed by holding the arm K on an intermediate contact is likely to burn out the starting resistor.

image

The three-terminal starting box is not suited for use where a field rheostat is used to obtain above-normal speeds. The reason is that a reduced field current can release the arm and shut down the motor. With field control, a slightly different arrangement, called a four-terminal starting box, is used.

Four -Terminal Starting Rheostat

Four-terminal manual starting rheostat has two functions in common with three- terminal starting rheostats: (1) to accelerate a motor to rated speed in one direction of rotation and (2) to limit the starting surge of current in the armature to a safe value. However, this starting rheostat can be used along with a field rheostat. The field control is used to obtain above-normal speeds. Figure 22–3 represents a four-terminal starting box connected to a shunt motor.

Note that the holding coil is not connected in series with the shunt field, as it is in the three-terminal starting box. In this four-terminal starter, the holding coil, in series with a resistor, is connected directly across the source voltage. The holding-coil current is independent of field current but still serves as a no-voltage release. If line voltage drops, the attraction of the holding coil is decreased, and a reset spring (not shown) returns the movable arm to the off position.

A motor with a four-terminal starter is started in the same manner as with a three- terminal starter. Any desired above-normal speed of the motor is obtained by adjustment of the field rheostat in series with the shunt field.

When the motor is to be stopped, all resistance in the field rheostat should be cut out, so that motor speed decreases to its normal value. Then the line switch should be opened. This procedure ensures that the next time the motor is started, it has a strong field and resultant strong starting torque.

image

22–4 MANUAL SPEED CONTROLLERS

It is often necessary to vary the speed of DC motors. As pointed out in Section 21–8, above-normal rating speeds are obtained by adding resistance to the shunt field circuit. Below-normal rating speeds are obtained by adding resistance to the armature circuit.

Two types of manual speed controllers are used with shunt and cumulative compound motors, above-normal speed controllers and above-and-below-normal speed controllers.

The National Electrical Manufacturers’ Association (NEMA) defines a manual speed controller as a device for accelerating a motor to normal speed with the additional function of varying speed. (Manual speed controllers must not be confused with manual starting rheostats, which simply accelerate a motor to normal speed.)

Above-Normal Speed Controller

This controller combines the functions of a starter and a field rheostat. The starting resistance is used in the armature circuit only during the starting period. This limits the armature current while the motor accelerates to normal speed. The field control circuit is effective only after the motor is brought up to normal speed. After normal speed, insertion of resistance weakens the field and produces higher speed. The controller illustrated in Figure 22–4, then, has three functions.

1. To accelerate the motor to rated speed by reducing the resistance in the armature circuit

image

2. To limit the current surge in the armature circuit to a safe value

3. To obtain above-normal speed control by varying the resistance in series with the shunt field

Two rows of contacts are mounted on a slate panel, as shown in Figure 22–4. The top row of small contact buttons connects to a tapped resistor, which is the field rheostat. The bottom row of larger contacts connects to a tapped resistor in series with the armature. The control arm K connects to both sets of contacts.

In the start position, arm B bypasses the field rheostat; thus, the full-line voltage is applied to the shunt field. Arm K, when moved clockwise, cuts out starting resistance as the motor accelerates. When arm K approaches the normal-run position, pin C pushes arm B counterclockwise until it is secured against the holding coil. The motor is now accelerated to normal speed.

In Figure 22–5 note that arm B is removed from the field circuit; thus, it no longer short circuits the field rheostat. Instead, arm B now bypasses the starting resistance, providing a direct path from the supply line to the armature.

If it is necessary to increase the speed of the motor to some value above normal, arm K is moved counterclockwise. This has no effect now on armature current, but it

image

does result in resistance being inserted in the shunt field circuit. Motor speed now in- creases. Arm K can be left in any intermediate position to obtain desired above-normal speed.

When the line switch is opened, the holding coil releases arm B, which is returned to its original on position by a spring. Pin C is now released and permits arm K to return to the off position. K is returned by a reset spring.

This type of controller can be used with either a shunt or a compound motor.

Above-and-Below-Normal Speed Controller

In some motor installations it is necessary to have a wide range of speed control, including both above-normal and below-normal speeds. A typical above-and-below- normal controller is illustrated in Figures 22–6 and 22–7. The movable arm K connects to two rows of contacts. The lower row of contacts connects to taps on the armature circuit resistor, and the upper row connects to taps on the field resistor. The contacts are mounted on the front of a slate panel, while the armature and field resistors are housed in a ventilated box in back of the panel. Continued clockwise movement of the arm results in continued increase of speed. This increase is accomplished first by removing armature circuit resistance and then by inserting resistance in the field circuit.

In the position shown in Figure 22–6, there is considerable resistance in series with the armature. The arm K also contacts the radial conductor D, which connects full-line

image

voltage to the shunt field. With the arm in this position, the speed is below normal. Once the movable arm is set on any contact point, it locks in that position until moved to some other point. This is done by a unique gear-and-latch system operated with the aid of the holding coil.

When a motor is operating under heavy load at slow speed, there is considerable current in the armature circuit. This large current requires the armature resistors to be of large size in order to radiate the heat produced by the large current. Large resistors make the physical size of this controller larger, for a given horsepower rating, than an ordinary manual starting rheostat.

As the arm is slowly moved clockwise to the upper end of the armature rheostat, it still contacts conductor D (at point B). The arm K also comes in contact with the curved conducting strip marked A. This is the normal speed position. Full-line voltage is applied to both the armature and the shunt field.

In the above-normal speed position, full-line voltage is still applied to the armature through strip A–E. The outer end of the control arm K now contacts a point on the field rheostat; thus, the resistance between the arm and point B is inserted into the field circuit. If the arm is moved to point C, all of the field rheostat is in use, producing maximum speed by field weakening. When the line switch is opened, the holding coil releases the latch, and the reset spring returns the arm to the off position.

This type of controller can be used with either a shunt or a compound motor. Connections for a shunt motor differ only by the omission of the series field.

 

Dc motors: field distortion and the need for interpoles, the shunt motor, the series motor and the compound motor.

21–4 FIELD DISTORTION AND THE NEED FOR INTERPOLES

In our study of generators we learned of a concept known as armature reaction (Section 19–4), which results in a distortion of the magnetic field. This distortion causes the neutral plane to shift forward (with respect to the direction of rotation).

In electric motors, as in generators, the current of the armature produces a magnetic field that interacts with and distorts the magnetic field in which the armature rotates. However, the magnetic action of motors is opposite to that of generators and, consequently, the neutral plane is shifted backward with respect to the direction of rotation; see Figure 21–9.

To counteract this warping of the magnetic field, large DC motors are often built with interpoles, or commutating poles. The windings of these poles are in series with the armature. The poles produce a field that counteracts the armature field. Interpoles increase efficiency and control excessive sparking at the commutator when the motor is operated under conditions requiring high armature current. In the motor shown in Figure 21–10, the four large poles are the main field poles, and the four small ones are the interpoles.

In a motor, the interpoles must have the same polarity as the main poles directly in back of them (back in the sense of direction of rotation of the armature); see Figure 21–11. In a generator, the interpoles have the same polarity as the main poles directly ahead of them.

In Figure 21–10, assuming a clockwise rotation of the armature (not shown), the polarities of the four main field poles and their interpoles would be as indicated.

image

image

DC machines are generally designed in such a manner that they can be employed as either a generator or a motor. Since the polarity of the interpoles differs between a genera- tor and a motor, many manufacturers provide access to the interpole winding by bringing leads out to the terminal connection box. Interpole, or commutating field, leads are generally labeled C1 and C2. Since the commutating field is connected in series with the armature, some manufacturers label the leads S3 and S4.

21–5 THE SHUNT MOTOR

DC motors, like DC generators, are classified by the way their field coils are connected; thus, we differentiate between shunt motors, series motors, and compound motors.

Shunt motors, as their name implies, have their field coils connected in parallel to their armature and the power supply, as shown in Figure 21–12. The shunt field, therefore, consists of many turns of fine wire and maintains a steady magnetic field as long as the line voltage is constant. The torque of the motor is therefore solely a function of the armature current.

Let us assume that the load on a motor is increased. As a result, the motor slows down. Consequently, the cemf goes down also, the armature current increases, and the motor increases its torque to meet the new demand of the load.

This action can be summarized by a form of shorthand notation, in which arrows pointing up indicate an increase of the quantity and vice versa, like this:

image

image

Speed Regulation

When the torque increases to meet the new load demand, the speed will readjust itself; thus, the motor maintains a fairly constant speed. We say that the motor is self-regulating. This self-regulating effect, called speed regulation, is a characteristic of the motor itself. The speed regulation is numerically expressed as

image

Note: The concept of speed regulation is not just for shunt motors but applies to all types of electric motors. The lower the percentage of regulation, the more constant the speed of the motor.

In a DC motor, the speed regulation is proportional to the resistance of the armature. The lower the armature resistance, the better speed regulation the motor will exhibit. DC motors operate on the principle of attraction and repulsion of magnetism between the magnetic field developed in the pole pieces and the magnetic field developed in the armature. If load is added to the motor, the motor must produce more torque to overcome the added load. To produce more torque, the magnetic field strength of the armature or pole pieces must increase. The increase in field strength is accomplished when the armature speed decreases, causing less counter-emf to be produced in the armature. The decrease of cemf permits more current to flow through the armature, causing an increase in magnetic field strength. The amount of counter-emf produced in the armature is proportional to the magnetic field strength of the pole pieces and the speed of armature rotation. If the armature resistance is very low, a small decrease of cemf will cause a significant increase in current and magnetic field strength.

EXAMPLE 21–3

Given: A motor turns 1,620 rpm at rated load but speeds up to 1,750 rpm when the load is removed.

Find: The speed regulation.

Solution

image

The concept of regulation allows us to compare the speed change characteristic of various motors. A low-percentage regulation indicates a fairly constant speed. Example 21–3 is typical of shunt motors, which makes this type of motor desirable for industrial applications with constant speed requirements.

Shunt motors have a peculiar characteristic. When resistance is added to their shunt field circuits, thereby decreasing the current and the magnetic flux, the motors will speed up. (This feature is explained in greater detail later in this chapter.) This fact must be understood to appreciate that shunt motors, especially the large ones, must be protected against an accidental loss of their magnetic field. If, for some reason, the shunt field should open up, the loss of the magnetic field would cause the motor to accelerate to dangerously high levels.

If you wonder how a motor can run without a magnetic field, remember that there is a sufficient amount of residual magnetism to cause the motor to run away. Runaway motors can eventually destroy themselves due to the physical stress caused by centrifugal force.

Note: Study groups desiring a more detailed analysis of shunt-motor characteristics are referred to the Appendix.

21–6 THE SERIES MOTOR

Unlike the shunt-motor field in which magnetization is attained by a small current in many turns, the series-motor field carries the entire current in a low-resistance coil of few turns; see Figure 21–13. Shunt field magnetization remains constant whether or not armature current changes; series field magnetization changes as the motor changes under varying load.

Unlike the shunt motor, the series motor does not have a constant speed characteristic. With every change in load, the current through the field coil changes correspondingly, causing tremendous speed variations.

image

Unlike in the shunt motor, the torque and speed of the series motor are inversely proportional. In our accepted shorthand notation, this can be expressed as

image

In other words, whenever the load on a series motor is reduced, the motor will speed up. In fact, if the load should be completely disconnected, the series motor might run away and destroy itself.

One might reason that the brisk acceleration would cause the cemf to increase rap- idly enough to shut off the torque-producing current. This, however, is not possible due to the sharp decrease in the magnetic flux. Thus, the torque accelerates the motor further, theoretically without limit. With the load removed, speeds can easily rise to 10,000 rpm, and if the friction in the motor is less than equivalent to the torque produced, speeds build up even more.

In actuality, the top speed of series motors is limited.

• In small motors, friction from bearings, brushes, and windage limits the speed. At 10,000 rpm, the entire power input can be expended on friction, and there is no further increase in speed.

• In large motors, high speed produces inertial forces that burst the bands holding the armature coils in place. At 5,000 rpm, the surface of an 8-inch-diameter armature is traveling at about 2 miles per minute, and each ounce of copper wire in the slots requires a force of 180 pounds to hold it in place.

For these reasons, it is recommended that series motors be used only in applications where the load is geared directly to the shaft of the motor. Belt drives, which are prone to slip or break, are not suitable for use with series motors.

A motor with such severe limitations must have some other strong advantages to recommend itself, and, indeed, it does. The series motor has the ability to provide high levels of torque at startup or whenever a sudden overload condition places a heavy demand on the motor. Let us see why this is so.

Torque is an interaction of the two fields produced by the armature and the series field. Let us assume the current through the motor is doubled. This, in turn, doubles the magnetic flux of the series field as well as the magnetic flux of the armature. As a result, the torque will increase by a factor of (2)2, or 4. We say that the torque of the series motor is proportional to the square of the current. (Of course, this statement is made with the assumption that the magnetic core is not saturated. Nevertheless, it should make the point that the series motor is ideally suited for any industrial application where extremely high torque is required and where very heavy overload is suddenly applied during operation. Examples of such applications include cranes, hoists, electric loco- motives for railways, and other electrical vehicles.)

But remember that this type of motor cannot be used where a relatively constant speed is required from no load to full load. Because the series motor has poor speed regulation, it can reach a dangerously fast speed when the load is removed.

Note: Study groups desiring a more detailed analysis of series-motor characteristics are referred to the Appendix.

21–7 THE COMPOUND MOTOR

Compare the advantages of series and shunt motors. The shunt motor has a more constant speed, but the series motor (of the same power rating) can exert a much greater torque without a great increase in current. These two desirable features can be obtained in the same motor by placing both a series field winding and a shunt field winding on the field poles of the motor, which is now a compound motor.

Consider the effect of adding a few series field turns to an existing shunt motor. At heavy loads, when the motor slows down, the increased current through the series field boosts the field strength, which gives added torque and speed.

Or consider the effect of adding a shunt field to a series motor. At light loads, when the motor tends to overspeed because of decreased field flux, the added constant-flux shunt field provides enough flux to put a reasonable limit on the top speed.

Combining the two fields within one motor results in a machine that retains the excellent starting torque of the series motor without the excessive speedup when the load is removed. These beneficial characteristics are derived only when the two field coils, the shunt and the series coils, produce magnetic fields aligned in the same direction (Figure 21–14). Wound in this manner, the windings are aiding each other in producing flux, and the motor is called a cumulative compound motor; see Figure 21–14. Most compound motors are wound in this manner and, therefore, the term compound motor implies that it is cumulatively compounded.

Infrequently, a motor is connected with its series field opposing the shunt field; in other words, their magnetic fields are opposing each other. This can be done either by winding the two coils in different directions on the field pole, as shown in Figure 21–15, or simply by reversing the current through one set of coils, arranged as in Figure 21–14. This type of motor is said to be differentially compounded.

When the shunt field is connected directly to the line, the connection is called long shunt, as shown in Figure 21–16A. When the shunt field is connected directly across the armature, the connection is called short shunt; see Figure 21–16B. The long-shunt connection is generally used, but the type of connection makes no particular difference in motor performace.

If a given long-shunt motor is reconnected to a short shunt, slight changes do occur. At no load, with small armature current, the shunt field current passing through

image

image

the series field slightly increases the total field flux. As a result, the maximum rpm of the motor is reduced. At heavy overload with high armature current, the voltage drop on the series field reduces voltage and current available to the shunt field. As a result, to maintain a high torque, the motor can take 1% more current and run 1% faster than when connected long shunt.

Excellent speed regulation can be obtained with this type of motor. The motor runs with practically constant speed under varying load conditions.

In summary, compound motors are generally connected long shunt and cumulative compound. Such motors develop a high torque when the load is suddenly increased. This motor also has another advantage: It does not race to an excessively high speed if the load is removed.

Some of the industrial applications for this motor are drives for passenger and freight elevators, for metal stamping presses, for rolling mills in the steel industry, for metal shears, and in similar applications.

The graphs in Figure 21–17 compare the characteristics of the three types of motors: series, shunt, and cumulative compound. Compound motors can be built with characteristics approaching either the series or the shunt characteristics, depending on the relative division of ampere-turns between series and shunt coils.

image